

2.1.0 | April 5, 2024

Handbook

Requirements Management

Practitioner | Specialist

Stan Bühne

Andrea Herrmann

Requirements Management | Handbook | © IREB 2 | 262

Terms of Use

1. Individuals and training providers may use this handbook as a basis for seminars, provided

that the copyright is acknowledged and included in the seminar materials. Anyone using this

handbook in advertising needs the written consent of IREB for this purpose.

2. Any individual or group of individuals may use this handbook as a basis for articles, books,

or other derived publications, provided that the authors and IREB e.V are credited as the

source and owners of the copyright.

All rights reserved. Use of the document (where this is not explicitly permitted by copyright

laws) is allowed only with the permission of the copyright owners. This applies in particular to

reproductions, processing, translations, microfilming, storage and processing in electronic

systems and public disclosure.

Acknowledgements

We would like to express our gratitude to IREB e.v. for giving us the opportunity to write this

book and for their continued organizational support throughout the process. The IREB

"Requirements Management" working group has contributed significantly to the contents of

the book, as the book is based on the syllabus created by the working group and the

members of the working group have supported us with comments, notes, and additional

material. We would therefore like to express our heartfelt thanks to the entire working group

(in alphabetical order): Frank Engel, Sven Eselgrimm, Günter Halmans, Frank Houdek, Patrick

Mäder, Alexander Rachmann, Thomas Schölzl, Amin Soesanto, Frank Stöckel, and Malik

Tayeh. Special thanks are due to Professor Dr. Martin Glinz and Dr. Thorsten Weyer who, with

their thorough appraisal and constructive comments, put the finishing touch to the book.

This handbook was produced by (in alphabetical order):

Stan Bühne, Dr. Andrea Herrmann. Translation to English by Tracey Duffy.

Copyright © 2015-2019 of the handbook "Requirements Management according to the IREB

Standard" is with the authors listed above. The rights have been transferred to the IREB

International Requirements Engineering Board e.V.

Requirements Management | Handbook | © IREB 3 | 262

Table of contents

1 What is requirements management? 13

1.1 Definition of requirements management 13

1.2 Tasks in requirements management 15

1.3 Goals and benefits of Requirements Management 17

1.4 The requirements management plan 19

1.5 Relevant standards .. 19

1.6 Literature for further reading 22

2 Requirements information model 23

2.1 Basic principles (classification of requirements) 24

2.2 Forms of presentation for documenting requirements 30

2.3 Describing a requirements landscape with a requirements information

model ... 31

2.4 Content for the requirements management plan 36

2.5 Literature for further reading 36

3 Assigning attributes and views for requirements 38

3.1 Objectives of assigning attributes and examples of the use of

attributes in management activities 38

3.2 What is an attribute schema? 42

3.3 The benefits of an attribute schema 43

3.4 Designing an attribute schema 44

3.5 Change management for attribute schemas 55

3.6 Goals and types of views .. 56

3.7 Defining views and the risks of views 58

3.8 Implementing a view ... 59

Requirements Management | Handbook | © IREB 4 | 262

3.9 Optimizing the assignment of attributes and creation of views 60

3.10 Content for the requirements management plan 62

3.11 literature for further reading 62

4 Evaluating and prioritizing requirements 63

4.1 Motivation and difficulties when prioritizing requirements 63

4.2 Principles of evaluation .. 64

4.3 Prioritizing requirements ... 66

4.4 Two types of prioritization techniques 68

4.5 Ad-hoc prioritization techniques 69

4.6 Analytical prioritization techniques 77

4.7 Combining prioritization techniques 81

4.8 Content for the requirements management plan 82

4.9 Literature for further reading 82

5 Version and change management 83

5.1 Versioning requirements ... 83

5.2 Change management for requirements 96

5.3 Change management process .. 102

5.4 Content for the requirements management plan 106

5.5 Literature for further reading 107

6 Requirements traceability 108

6.1 Reasons for requirements traceability 108

6.2 Different traceability views 110

6.3 Relationship types for traceability relationships 111

6.4 Forms of presentation for traceability relationships 116

Requirements Management | Handbook | © IREB 5 | 262

6.5 Developing a strategy for project-specific traceability 126

6.6 Creating and using project-specific traceability models 128

6.7 Measures for evaluating implemented traceability 134

6.8 Challenges for traceability between textual and model-based artifacts

 ... 136

6.9 Content for the requirements management plan 138

6.10 Literature for further reading 138

7 Variant management for requirements 140

7.1 Using variants of requirements 143

7.2 Forms of explicit documentation of variants and evaluation of these

forms .. 147

7.3 Feature modeling ... 152

7.4 Content for the requirements management plan 159

7.5 Literature for further reading 159

8 Reporting in requirements management 161

8.1 The goals and benefits of reporting in requirements management ... 161

8.2 Establishing a reporting system in requirements management 163

8.3 The risks and problems of using reporting 178

8.4 Content for the requirements management plan 180

8.5 Literature for further reading 180

9 Managing Requirements Engineering processes 181

9.1 Requirements Engineering as a process 181

9.2 Parameters of the Requirements Engineering process 184

9.3 Documenting the Requirements Engineering process 188

9.4 Monitoring and controlling the Requirements Engineering process .. 191

Requirements Management | Handbook | © IREB 6 | 262

9.5 Process improvement for the Requirements Engineering process 192

9.6 Content for the requirements management plan 196

9.7 Literature for further reading 197

10 Requirements management in agile projects 198

10.1 Background ... 198

10.2 Requirements management as part of agile product development 202

10.3 Mapping requirements management activities to scrum activities ... 206

10.4 Literature for further reading 208

11 Tool-based requirements management 209

11.1 Role of tools in requirements management 209

11.2 Basic procedure for tool selection 210

11.3 Data exchange between requirements management tools 211

11.4 Content for the requirements management plan 213

11.5 Literature for further reading 213

12 List of Abbreviations 214

13 Bibliography ... 215

14 Index .. 223

Annex A: Template for a requirements management plan 225

1 The Requirements Engineering and requirements management

process .. 228

1.1 Requirements Engineering and requirements management tools 228

1.2 Requirements information model 228

1.3 Attribute schema ... 229

Requirements Management | Handbook | © IREB 7 | 262

1.4 Prioritization ... 229

1.5 Traceability ... 230

1.6 Views and reports .. 230

1.7 Versioning ... 231

1.8 Change process ... 231

1.9 Variant management ... 231

Annex B (tool selection) 233

1 The challenges of introducing and using tools 234

2 Criteria for selecting a requirements management tool .. 236

3 Analyzing selected tools using the requirements management

plan evaluation criteria 240

Annex C (Earned Value Analysis) 257

Requirements Management | Handbook | © IREB 8 | 262

The IREB CPRE module Requirements Management

Anyone working as a Requirements Engineer, business analyst, consultant, demand

manager, or project manager in system and software development projects knows that for a

project to be implemented successfully, it is by no means enough to simply know the

stakeholders of the project and to document their aligned requirements at the beginning of

the project!

No, even if all requirements were well structured, aligned, and accepted at the start of the

project, they will change by the end of the project or "go live"—and always at the worst times.

Requirements also change during operation of the system (or software) concerned and

should be kept up to date for documentation purposes until the system is decommissioned.

However, the fact that requirements change is due neither to the requirements engineer or

poorly selected methods, nor to the stakeholders involved; it is usually simply due to the

nature of things and constraints which change over time.

The more complex the project, the more indispensable requirements management (RM) is

to avoid uncontrolled "fire-fighting" at such times and to enable you, as the requirements

manager, to be able to provide information about the status of the requirements or about

the effects of any change requests at any given time.

On one hand, requirements management includes the conscious management of

requirements in the classic sense (e.g., by means of assignment of attributes, creation of

views, traceability, etc.) as well as the management of changes to requirements. On the

other hand, the prior planning and monitoring of the defined Requirements Engineering (RE)

processes are also part of requirements management, in the sense of: "How do I elicit,

document, and review my requirements to be able to continuously report on the status and

to react to planned changes?".

In this handbook for the IREB CPRE module Requirements Management - Practitioner - and

– Specialist -, we would therefore like to consider requirements management from both

sides. To do so, we present the essential concepts of requirements management, but always

also describe the necessary planning aspect which enables a conscious management of

requirements.

To consciously manage requirements, the requirements manager must plan and define the

following at the beginning of the Requirements Engineering process:

▪ The requirement types to be considered, the format in which they must be presented,

and the level of detail to which they must be specified

▪ The questions the requirements manager must answer on the basis of his

requirements and the views that are necessary for the different stakeholders

▪ The criteria to be used to evaluate the requirements to support prioritization

▪ Version control for requirements and requirements documents

▪ How and when changes should be handled

▪ The requirements and other development artifacts between which traceability must

be achieved

Requirements Management | Handbook | © IREB 9 | 262

▪ Whether and how to document requirement variants within the requirements

specification

▪ The requirement status reports needed, the information they must contain, and the

sources (for example, attribute documentation) that can be used to determine this

information

▪ What the exact Requirements Engineering process (or sequence of activities) for the

project should look like, and how the process can be monitored and potentially

improved

The results of these considerations are documented in a requirements management plan{

XE "Requirements management plan" } (RMP). With this document, both the Requirements

Engineering process as a whole and the reporting, prioritization, and changes (that are part

of requirements management) can run in a structured manner according to plan.

Requirements management is planned and executed by the requirements engineer{ XE

"Requirements Engineer" } or by someone exercising the separate role of a requirements

manager{ XE "Requirements Manager" }. Within the scope of requirements management,

the requirements manager plans, manages, and monitors the Requirements Engineering

process and its artifacts, reporting, for example, to the client or project manager. The

requirements manager also coordinates changes.

The requirements management plan ensures that the Requirements Engineering process

can be monitored actively and that subsequent decisions can be taken consciously and such

that they can be traced. This does not mean that Requirements Engineering is not an

iterative, incremental, and creative process: it merely means that the Requirements

Engineering process should be planned creatively and consciously and should not be

chaotic!

This handbook supports the requirements manager in the creation of the requirements

management plan by explaining the concepts and terms required for the plan and

presenting appropriate methods.

This book also shows how Requirements Engineering and requirements management can be

implemented in agile projects—after all, requirements (e.g., user stories) are also

documented in agile projects and such projects must also be able to handle changes,

prioritization, etc.

In practice, it is difficult to imagine specifically implementing requirements management in

complex projects without using tools. Therefore, in the last chapter of the book, we describe

options for support from requirements management tools, as well as the limitations of these

tools.

With these topics, the handbook for the module Requirements Management - Practitioner -

and - Specialist - of the IREB Certified Professional for Requirements Engineering (CPRE)

provides you with the know-how you need to manage requirements consciously and in a

structured manner.

We hope you enjoy reading the book!

Requirements Management | Handbook | © IREB 10 | 262

More information on the IREB Certified Professional for Requirements Engineering module

Requirements Management - Practitioner - and - Specialist - can be found at:

http://www.ireb.org.

Foreword

This Handbook for Requirements Management Practitioner and Specialist according to the

IREB Standard supplements the syllabus of the International Requirements Engineering

Board for the module Requirements Management Pactitioner and Specialist Version 2.0.0

dated July 1, 2022 and is based on the IREB Glossary [Glin2014].

The target audience for the handbook includes both training providers who want to offer

seminars on Requirements Management Practitioner and/or Specialist according to the

IREB standard, and training participants and interested parties who want a detailed view of

the subject matter for this module and of requirements management according to the IREB

standard.

This handbook is not a substitute for training or educational books on the topic. The

handbook in fact represents a link between the compact syllabus (which merely lists and

explains the learning objectives of the module) and the multitude of literature that has been

published on the topic of requirements management in recent decades.

Together with the references to additional literature, the content described in this handbook

is intended to support training providers in preparing training participants specifically for the

certification exam. This handbook offers training participants and interested parties the

opportunity to expand their knowledge in the area of requirements management and to work

through the detailed content based on literature recommendations. Furthermore, the

handbook is also intended as a reference—for example, for refreshing knowledge about the

various topic areas in requirements management after successful certification.

!

In addition to the content that expands on the syllabus and is relevant for the

exam, in each chapter, the handbook offers explanatory examples based on a

continuous case study. The case study is identified by the icon shown here on

the left. The content in the case study is not directly relevant for the exam but

is highly recommended to allow a better understanding of the other content in

the handbook.

We also offer interested readers information which goes beyond the exam and which is not

relevant for the exam. Where this additional content fits within the flow of the material, it has

been integrated in the respective chapter and flagged as not relevant for the exam with a

red marking to the side (see right).

The additional content in Annexes A to C is also not relevant for the exam.

We are happy to receive any suggestions you might have for improvements or corrections.

E-mail contact: info@ireb.org

http://www.ireb.org/
mailto:requirementsmanagement.guide@ireb.org

Requirements Management | Handbook | © IREB 11 | 262

We hope you enjoy reading this handbook and wish you good luck with the certification exam

for the IREB Certified Professional for Requirements Engineering module Requirements

Management - Practitioner - or - Specialist.

Stan Bühne

Andrea Herrmann

Autumn 2015

Requirements Management | Handbook | © IREB 12 | 262

Version History

Version Date Comment Author

1.1.0 September 1, 2019 Initial English version

based on German

version 1.1.0

Stan Bühne,

Andrea Herrmann,

Frank Houdeck,

Stefan Sturm

2.0.0 July 1, 2022 Inclusion of the

Advanced Level split in

Practitioner and

Specialist

2.1.0 April 5, 2024 New Corporate Design

implemented

Requirements Management | Handbook | © IREB 13 | 262

1 What is requirements management?

This chapter initially defines why requirements management is important, for whom and for

what purpose it is important, what tasks requirements management includes, and who

performs these tasks.

1.1 Definition of requirements management

As is the case for many terms, there are different definitions for the term "requirements

management". The relationship between requirements management (RM) and Requirements

Engineering (RE) is also not defined uniquely. Sometimes, requirements management is

deemed to be part of Requirements Engineering (as is the case for the CPRE Foundation

Level [IREB2015]); and in other cases, Requirements Engineering is deemed to be part of

requirements management (e.g., in [Schi2001]). In contrast, the CMMI [SEI2011] awards both

requirements management and Requirements Engineering equal value.

Definition 1-1:

We define requirements management as part of Requirements

Engineering.

Requirements Engineering{ XE "Requirements engineering" } is a systematic and disciplined

approach to the specification and management of requirements with the following

objectives:

1. Knowing the relevant requirements, establishing consensus among the stakeholders

about the requirements, documenting the requirements in compliance with given

standards, and managing the requirements systematically

2. Understanding and documenting the stakeholders' desires and needs

3. Specifying and managing requirements to minimize the risk that the system that does

not meet the stakeholders’ desires and needs [Glin2014] and [PoRu2015].

Requirements management{ XE "Requirements management" }: the process of managing

existing requirements and requirements-based artifacts. In particular, this includes

documenting, changing, and tracing requirements [Glin2014]. It also includes managing the

Requirements Engineering process, i.e. its planning, control and monitoring. In the following,

we state some additional definitions to show the diversity that exists in professional

literature. The IREB has defined a clear definition so that certified requirements managers

and requirements engineers always mean the same thing when they use a particular term.

Unambiguous terms not only simplify collaboration in professional life; when, as

recommended in the introduction to this handbook, the role of the requirements manager is

introduced in addition to the role of the requirements engineer, the definition of the

relationship between the two disciplines (Requirements Engineering and requirements

management) defines the division of tasks across these two roles.

Requirements Management | Handbook | © IREB 14 | 262

Ebert [Eber2012] also defines the following: "Requirements management (RM) is a part of

Requirements Engineering that is concerned with the maintenance, management, and

further development of requirements in the lifecycle." This lifecycle is very important with

regards to Requirements Engineering. Accordingly, it is not enough to simply collect

requirements once. Changes must be managed over the entire lifecycle of the

software/system. Note that not only the software/system itself but also each individual

requirement goes through its own lifecycle.

According to Pohl [Pohl2010], requirements management can be divided into three main

subactivities:

1. Observation of the system context to reveal context changes

2. Management and execution of the Requirements Engineering activities (i.e.,

requirements management as process management)

3. Management of the requirements and related artifacts during the development

process

According to the ISO/IEC/IEEE 29148:2011 [ISO29148] standard, requirements management

is defined as "activities that ensure requirements are identified, documented, maintained,

communicated and traced throughout the life cycle of a system, product, or service".

Requirements management involves not only the management of the requirements, but also

all information associated with the requirements: "Maintain throughout the system life cycle

the set of system requirements together with the associated rationale, decisions and

assumptions." ([ISO15288], 6.4.2.3 b).

!

To illustrate the definitions and recommendations in this handbook, we use

the example of an online banking system. We assume that the system

already exists. The system was developed based on a complete and quality-

assured requirements specification according to the standard norms.

However, this is not enough. The requirements for the system change: due to

changes in law (e.g., the changeover to SEPA); through continuous efforts to

make online banking more secure but keep the same level of user-

friendliness; or to make online banking more user-friendly with the same

level of security; through technical innovations; through ideas from product

management for new functionality; or through changes to business

processes at the bank that have an effect on online banking. The objective

now, despite these many change ideas that come from all directions, is to

keep an overview of the requirements, estimate in advance what the costs

and other consequences of implementing an idea would be, and to justifiably

implement, defer, or reject the changes. Furthermore, all stakeholders (such

as the IT department, product management, the executive board, the data

protection officer, and the Customer Advisory Board) must be included in

the process. Even our requirements engineer is a stakeholder.

Our requirements engineer is Peter Reber. He is 35 years old and has been

working at our example bank for 10 years. He knows all the stakeholders well

and is happy to contact them for no specific reason, simply to find out if there

Requirements Management | Handbook | © IREB 15 | 262

is any news about anything. The online banking was successfully introduced

before Peter started working at the bank. Since being trained by his

predecessor, Peter has been solely responsible for conscientiously

managing the requirements for online banking according to the rules of

Requirements Engineering.

However, his peaceful days are ending as the entire online banking is being

changed to a new corporate design, with new colors, new fonts, technical

terms, and logos. The bank wants to take this opportunity to introduce new

functionality to increase safety and user-friendliness. A group of experts will

soon be collecting or defining change requirements, which means that they

will be performing Requirements Engineering: several external business

analysts are analyzing the business processes, a team of IT security experts

is conducting risk analyses, the usability expert is designing alternative

interface designs and improving accessibility, and a moderator is holding an

ideas workshop with the Customer Advisory Board. All of these people are

performing Requirements Engineering. Peter Reber's task is to organize and

coordinate their work. This means that while they are performing

requirements engineering, Peter is taking care of the requirements

management.

1.2 Tasks in requirements management

Here we define the tasks that make up requirements management. This definition is

therefore also a role description: the requirements manager is responsible for requirements

management and either performs the tasks belonging to requirements management or

monitors the performance of the tasks by other persons.

Three main constraints [RuSo2009] make the requirements management tasks more

complex:

▪ Requirements have to be used by multiple persons

▪ Requirements are supposed to be reused

▪ Requirements change

Requirements management is responsible for providing the rules and techniques required so

that requirements and other information can be stored in such a way that everyone involved

can find what they need. This must be planned in advance. Therefore, before the

Requirements Engineering process begins, the requirements manager creates the

requirements management plan (RMP).

Requirements Management | Handbook | © IREB 16 | 262

Definition 1-2:

The requirements management plan{ XE "Requirements management plan"

} covers:

- The requirements landscape—that is, the types of requirement

artifacts to be managed and the level of detail they contain (see

Chapter 2)

- Attributes and views of the requirements (see Chapter 3)

- Prioritization criteria and methods (see Chapter 4)

- Version management for requirements and the change process (see

Chapter 5)

- Managing the traceability of requirements (see Chapter 6)

- Variant management (Chapter 7)

- Reporting (Chapter 8)

- The Requirements Engineering process and activities to improve

this process (Chapters 9 and 10)

- Tools to be used (Chapter 11)

In the following chapters, this handbook looks at the content of the requirements

management plan and proposes different methods for the respective activities to be

performed. At the end of each section there is a summary of the content that the

requirements management plan should contain.

During the Requirements Engineering process, within the scope of requirements

management, these tasks are performed according to the plan: views and reports are

created and updated, requirements are selected for releases, changes are managed and

prioritized systematically, product lines are defined and managed, tools are introduced, and

the Requirements Engineering process is monitored and improved.

Requirements management is planned and executed by the requirements engineer or by

someone exercising the separate role of a requirements manager. The relationship between

the requirements manager and the requirements engineer is like that of the relationship

between the quality manager and a tester. This division of tasks makes sense when, in

complex projects with a critical schedule, there is so much work for Requirements

Engineering and requirements management that multiple persons have to collect, align, and

manage requirements. A role is then required that sets up and monitors the process and

merges and evaluates information.

Requirements Management | Handbook | © IREB 17 | 262

!

Peter Reber's first task is therefore to create the requirements management

plan. He could also organize the creation of the plan by somebody else. In our

case, due to his vast experience, Peter creates the requirements

management plan himself. He can, of course, request help from the many

Requirements Engineering experts available and should in any case agree

the plan with these experts. It may be the case that the experts have special

requirements for requirements management. In this handbook, we

accompany Peter and his team through their tasks step by step.

1.3 Goals and benefits of Requirements Management

The goal of requirements management is to manage requirements and other artifacts

related to requirements (e.g., interview logs and the customer requirements specification) in

such a way that the requirements can be systematically scanned, grouped, evaluated,

changed, and tracked with reasonable effort. Requirements management thus attempts to

meet the needs of many different stakeholders simultaneously. The needs are essentially

dependent on the specific project context. They differ, for example, in projects for

customer-specific software or product development compared to internal projects

performed by the IT department.

Amongst other things, requirements management provides answers to the following

questions, based on the techniques given in parentheses:

▪ What different types of requirements are there? (Requirements landscape)

▪ To what levels of detail are requirements documented? (Requirements landscape)

▪ Which requirements have already been accepted? (Assignment of attributes)

▪ Which requirements come from which source? (Assignment of attributes)

▪ Which requirements are urgent and important and therefore candidates for the next

release? (Evaluation and prioritization)

▪ Which requirement generates costs that are too high with too few benefits?

(Evaluation and prioritization)

▪ Which requirements belong to a specific software baseline? (Version management)

▪ Which version of the requirement was implemented in the system? (Versioning)

▪ Who was the last person to change the requirement and why did they change it?

(Versioning)

▪ Which technical component belongs to which requirement? (Traceability)

▪ Which test cases belong to which requirement? (Traceability)

▪ Which requirement is part of the system/product delivered? (Traceability)

▪ How do the two variants of the product differ? (Variant management)

▪ What proportion of the requirements has already been implemented and tested?

(Reporting)

▪ How long does it take on average for a change request to be implemented?

(Reporting)

▪ Has the Requirements Engineering process been improved by a specific measure?

(Reporting)

Requirements Management | Handbook | © IREB 18 | 262

In principle, requirements management is worthwhile not just for larger projects but also for

small projects. However, for small projects with a low level of complexity, the core team

often performs requirements management in their head, yet still knows exactly when which

requirement was changed and why.

Requirements management is more important and more difficult [RuSo2009]…

▪ ... the greater the number of requirements that exist

▪ ... the longer the estimated lifetime of the product is

▪ ... the greater the number changes that are expected

▪ ... the larger the number of participants in the Requirements Engineering process is

▪ ... the more difficult it is to reach or involve the stakeholders

▪ ... the higher that the quality demands on the system are

▪ ... the greater the level of reuse that is to be performed

▪ ... the more complex the development process is

▪ ... the more inhomogeneous stakeholders' opinions are

▪ ... the greater the number of releases that will be developed

▪ … the more important the use of standards is for the project

Good requirements management … [RuSo2009]

▪ ... increases the quality of requirements, products, and processes

▪ ... reduces project costs and project duration

▪ ... makes it easier to monitor complex projects during all phases

▪ ... improves communication within and among teams

▪ ... increases customer satisfaction

▪ ... reduces the project risk

Requirements management is a complex task: every stakeholder should be able to access

up-to-date information at all times and should also be informed about changes that affect

them, but without overloading them with unnecessary information. This should also apply

even if the stakeholders are spread around the world and when contact persons change. At

the same time, however, data protection regulations must be complied with and each person

must be able to access only that information that they need to do their job. The data

collected by requirements management leads to a certain complexity—not solely as a result

of the pure quantity of requirements and associated information, but also from mutual

dependencies between requirements and the temporal dimension of versions and

requirements baselines.

Requirements management simplifies Requirements Engineering:

▪ Structuring of requirements and the requirements document (e.g., via assignment of

attributes, sorting, and filtering)

▪ Standardization of terminology (e.g., via a glossary)

▪ Definition of clear processes and work steps to be performed (e.g., in the change

process)

Requirements Management | Handbook | © IREB 19 | 262

!

For Peter Reber, therefore, there is no question of the benefits of

requirements management. The expectation is that the large number of

stakeholders and requirements engineers will produce a large number

(perhaps even too large) of change requirements. The requirements must be

aligned with one another and the most relevant requirements selected for

the first release. Of course, like most projects, this project is under pressure

from a time perspective and has only a fixed budget that has been defined

in advance.

1.4 The requirements management plan

The necessity of a project management plan [PMI2013] is something that has been known in

project management for years. This plan describes how a specific project is to be executed.

In addition to the project schedule, the plan contains the planning, details of how, for

example, risk management is to be performed, how communication and discussions should

take place, who is responsible for what, etc. The plan enables the project manager to bring all

project team members to the same level of information about how work is to be performed

within the project. The plan also provides the opportunity to control the process.

The requirements management plan (RMP) is very similar to the project management plan.

Amongst other things, the requirements management plan describes the planning for how

the Requirements Engineering process is to be set up, who is responsible for what tasks,

which requirements are to be documented and how they are to be documented, how these

requirements are to be managed, whether tools are to be used and, if so, which tools. In brief,

the requirements management plan describes all aspects that must be considered in

Requirements Engineering and requirements management for a new development or for the

continued further development of a product, for example. The requirements management

plan thus describes the framework for the entire Requirements Engineering process.

In the following chapters, we describe the main content of requirements management and in

each chapter, we point out which of the aspects described should be included in a

requirements management plan. Annex A also contains a template for a requirements

management plan for your own use.

Note: In practice, the requirements management plan is often not an independent document

but rather part of the project plan, the configuration management plan, or other specification

documents for the development process. The structure of the requirements management plan

in the annex should essentially give you a framework for this topic.

1.5 Relevant standards

To ensure that software and technical systems are developed to a high quality in such a way

that they can be traced and repeated, various standards have been developed. These

standards describe the activities to be performed, the artifacts to be created, and the

Requirements Management | Handbook | © IREB 20 | 262

techniques to be applied. The standards universally recognize requirements management as

making an important contribution to ensuring the quality of results. The standards therefore

also make statements about the execution of requirements management. However, the

statements of the various standards are not necessarily consistent and compatible with one

another. For example, the standards use different terms for one specific artifact and

suggest different chapters respectively.

Some important standards that cover the entire software or system development process,

and thereby also make statements about Requirements Engineering and requirements

management, are the following:

▪ The process capability maturity model integration, CMMI (Version 1.3) [SEI2010],

considers, amongst other things, the processes "requirements development" and

"requirements management", whereby some of the assigned objectives differ

significantly from the definitions of the IREB.

▪ ISO 9000/ISO 9001 [ISO9000] is a standard for quality management in organizations.

ISO 9001:2008 ("Quality Management Systems - Requirements") defines minimum

requirements for a quality management system and describes, for example,

requirements for product realization as well as measurement and improvement and

thus addresses topics such as identifiability or traceability of requirements (see

Clause 7.5.3, "Identification and Traceability").

▪ ISO/IEC 12207:2008 [ISO12207] and 15288:2008 [ISO15288] ("Software life cycle

processes" and "Systems and software engineering - Systems life cycle processes")

define all processes for systems and software development. The tasks "System

requirements analysis" and "software requirements analysis" from ISO/IEC 12207 and

"Stakeholder Requirements Definition Process" and "Requirements Analysis Process"

from ISO/IEC 15288 cover the activities of Requirements Engineering and

requirements management.

▪ IEC 61508 [DIN 61508] ("Functional safety of safety-related

electrical/electronic/programmable electronic systems") deals with the definition of

requirements for the functional safety of systems and their implementation, including

quantitative safety assessments. Particular attention is given to the topic of

traceability. The standard defines safety integrity levels (SIL) 1 to 4, which describe

the risk.

▪ The higher the level, the greater the potential risk, and thus the greater the

requirements for system reliability.

▪ SOX (Sarbanes-Oxley Act) [USCo2002] is a US federal law in response to accounting

scandals which is intended to improve the reliability of reporting by companies listed

on the public capital market in the USA. In essence, the core of the Sarbanes-Oxley

Act is about knowing who made what changes when, and thus also relates to the core

tasks of requirements management.

Requirements engineering and requirements management can be found in the following

standards, for example:

▪ VDI guideline 2519 sheet 1 - The procedure for the creation of customer requirements

specifications/system requirements specifications [VDI2001] is the German standard

Requirements Management | Handbook | © IREB 21 | 262

for describing customer requirements specifications and system requirements

specifications.

▪ IEEE 830-1998 ("Recommended Practice for Software Requirements Specifications")

[IEEE830] defines terms for Requirements Engineering and requirements

management—in particular, quality properties of requirements and the chapters

involved in a specification (“software requirements specification”). Many of these

definitions have also been included in the CPRE Foundation Level [IREB2015].

▪ ISO/IEC/IEEE 29148:2011 ("Systems and software engineering – Life cycle processes –

Requirements engineering") [ISO29148] defines quality properties and attributes of

requirements and recommends iterative handling of requirements over the entire

lifecycle.

▪ IEEE Standard 1233 "Guide for Developing System Requirements Specifications"

[IEEE1233] describes the development of requirements and specifications and the

management of these in the entire product development. The standard describes the

collection and definition of requirements, change management, and the organization

of requirements in a project.

▪ ISO/IEC 14102:1995 ("Evaluation and Selection of CASE Tools”) [ISO14102] describes

requirements for CASE tools—that is, tools for computer-aided software

development—but can also be used to select Requirements Engineering and

requirements management tools.

▪ ISO/IEC 25010:2011 ("Systems and software engineering — Systems and software

Quality Requirements and Evaluation (SQuaRE) — System and software quality

models") [ISO25010] describes two quality models for non-functional requirements:

one for "Quality in use", and one for the product quality. These quality models can be

used to collect and specify non-functional requirements of software and computer

systems in a standardized way.

▪ ISO 29110 ("Lifecycle process standard for Very Small and Medium Entities (VSME)")

[ISO29110] describes a system lifecycle, including Requirements Engineering, for

small and medium-sized units, so for projects with less than approx. 25 persons.

▪ The European standard ISO 9241 [ISO9241], which is also recognized as a DIN

standard, describes guidelines for human-computer interaction—specifically, both a

list of quality requirements that a user-friendly software must contain, and the

development and testing process for such software.

There are also industry-specific standards, such as DO 178 B/ED-12B and DIN EN 14160 for

aviation, IEEE/EIA Std. 12207:1998 for the military, FDA-535, FDA-938, and EN62304 for

medical engineering, EN 50128 for railway technology, or ITU X.290-X.296 (ISO/IEC 9646-x)

or ETSI ES 201 873-x (TTCN-3) for telecommunications.

These standards do not apply automatically and above all, they do not apply simultaneously,

as they are not completely compatible with one another. Each company and each project

selects the appropriate standards which they then apply in the original or an adapted form.

Sometimes, the customer requires compliance with a specific standard.

In addition to the standards and guidelines referred to above, company-specific standards

of the software manufacturer or the customer must also be observed. In turn, these can be

Requirements Management | Handbook | © IREB 22 | 262

developed based on public standards and can contain aspects of Requirements Engineering

and requirements management.

!

Due to its comprehensibility and the fact that the contents are closely

related to practice, for his work, Peter Reber uses this IREB Handbook for

Requirements Management, which has been developed from standards. The

company guidelines for the implementation of IT projects and the new

corporate identity also apply.

1.6 Literature for further reading

For further reading, we recommend the standards detailed in the previous section.

Further definitions can be found in the IREB Glossary [Glin2014].

Requirements Management | Handbook | © IREB 23 | 262

2 Requirements information model

In this chapter, we look at how you can define the different aspects of your project-specific

requirements landscape and describe them with a requirements information model.

When documenting requirements, we repeatedly encounter a number of basic questions

that have nothing to do with the specific content of requirements, but which must be defined

at an early stage, for example:

▪ What are the different types of requirements that exist and that have to be

considered?

▪ How can requirements be classified according to their solution dependency?

▪ How should these requirements be documented and presented?

▪ To what level of detail must the requirement be described?

These questions should generally be clarified at the beginning of the Requirements

Engineering process. However, projects do not always run as ideally as desired. Sometimes,

projects are taken over from third parties who have not made any specifications of this type.

Sometimes, the constraints at the beginning of a project do not allow you to create a

requirements management plan or to think about the structure of requirements, and

therefore, initially you merely "collect" requirements without classifying them. What is

important, however, is that at a given time—as early as possible—you plan your requirements

landscape. As the requirements manager, as well as being responsible for managing the

requirements artifacts, you are responsible for managing the activities in the Requirements

Engineering process, which means planning, monitoring, and controlling these activities

appropriately (definition 1-1).

Definition 2-1:

Requirements artifact{ XE "Requirements artifact" } according to

[Glin2014],[Pohl2010]:

"A requirements artifact is a documented requirement."

Therefore, whenever we refer to requirements artifacts in the subsequent chapters, we are

referring to a documented requirement. In contrast, when we use the more general term

"artifact", we are referring to documented artifacts at different development levels: for

example, test cases, architecture descriptions, etc. (see IREB Glossary [Glin2014]).

Requirements Management | Handbook | © IREB 24 | 262

Definition 2-2:

Requirements landscape{ XE "Requirements landscape" }: A

requirements landscape is a specification of the:

1. Classification to be used for the types of requirements

2. Classification to be used for the independence of the

requirement from a solution

3. Required levels of abstraction (detailing levels) for each type

of requirements artifact

4. Forms of presentation to be used for each type of requirements

artifact

In the following sections, we look at the different dimensions of the requirements landscape

and provide information about the points in the landscape that a requirements manager has

to think about in order to create a requirements information model{ XE "Requirements

Information Model" } (RIM) to describe the requirements landscape.

2.1 Basic principles (classification of requirements)

When we talk about requirements, we are often talking about the different forms of a

requirement. A requirement can be differentiated, for example, by its level of detail.

Requirements can be very detailed and describe a specific function, but they can also be a

very abstract requirement for the overall system. Apart from the level of detail,

requirements can also differ in the type of content they contain. For example, a requirement

can describe the quality of a system (e.g., correctness) or require functional properties.

Requirements can also differ in their independence from a solution; they can be generic

product objectives, for example, in contrast to requirements for the data structure. In

principle this is nothing new, and it has already been mentioned in the Certified Professional

for Requirements Engineering – Foundation Level [IREB2015].

Therefore, for better orientation and to enable you to construct your requirements

landscape more specifically, we want to classify requirements according to the following

dimensions:

▪ the type of requirement

▪ the independence of a requirement from a solution

▪ the level of detail (or abstraction level) of a requirement

The dimensions referred to above are orthogonal to one another, which means that even at

a level with a high level of detail, there are goals, for example—that is, requirements that are

independent of a solution.

Requirements Management | Handbook | © IREB 25 | 262

2.1.1 Classification by type of requirement

The following question is often raised in requirements management: "What types of

requirements have to be considered during collection and documentation?". This question

can be answered with a quick look back at the Certified Professional for Requirements

Engineering – Foundation Level [IREB2015].

▪ Functional requirements{ XE "Functional requirement" }: Functional requirements

describe the functionality that the planned system should provide. These

requirements describe what the planned system should be able to do—for example,

which data a customer needs for authorization at an ATM to authorize a withdrawal of

cash.

Definition 2-3:

Functional requirement according to [PoRu2015]:

"A functional requirement is a requirement concerning a result of

behavior that shall be provided by a function of the system."

▪ Quality requirements{ XE "Quality requirement" }: Quality requirements describe

desired qualities of the planned system and thereby influence the system

architecture. This class describes, for example, requirements with regard to the

reliability, security, scalability, or performance of the planned system or individual

functions.

Definition 2-4:

Quality requirement according to [PoRu2015]:

"A quality requirement is a requirement that pertains to a quality

concern that is not covered by functional requirements."

▪ Constraints{ XE "Constraint" }: Constraints are organizational, legal, or technical

specifications (usually limitations) for the realization of the planned system. They can

be a wide variety of conditions, starting with time-based specifications for

implementation, through to specific technology specifications for implementation.

Requirements Management | Handbook | © IREB 26 | 262

Definition 2-5:

Constraint according to [PoRu2015]:

"A constraint is a requirement that limits the solution space

beyond what is necessary for meeting the given functional

requirements and the quality requirements."

The characteristics of the different types of requirements and their further categorization

are discussed in detail in literature (see [Pohl2010]; [PoRu2015]; and [Eber2012]).

In addition to the classification of requirements introduced above, Requirements

Engineering literature contains further classifications for which an association to the three

types of requirements referred to above can be established, for example:

▪ [RuSo2009]: functional requirements, technology requirements, quality

requirements, requirements for the user interface, requirements for other

components delivered, requirements for activities to be performed, legal contractual

requirements

▪ [WiBe2013]: business requirements, business rules, constraints, interface

requirements, features, functional requirements, non-functional requirements,

quality requirements, system requirements, user requirements

▪ [RoRo2014]: functional requirements, non-functional requirements{ XE "Non-

functional requirement" }, constraints

▪ [Youn2014]: business requirements, user requirements, product requirements,

environment requirements, system requirements, functional requirements,

performance requirements, interface requirements, etc.

However, it is not the classification you use to differentiate between requirements that is the

decisive factor for good requirements management, but rather the awareness of the

existence of different types of requirements that have to be considered to describe the

desired change or the planned system completely.

None of the requirement type classifications presented in this chapter is a generally valid

standard. The point of this information is merely to illustrate the wealth of types of

requirement that have become established in recent years.

2.1.2 Classification according to the dependence of

requirements on a solution

Regardless of the type of a requirement, requirements often demonstrate very different

levels of dependence on a solution. Therefore, in descriptions of requirements, we often find

a mix of:

▪ Goals to be achieved with a system (usually an almost solution-independent

description of the goal to be achieved—for example, easier and more secure access

to cash for all bank customers)

Requirements Management | Handbook | © IREB 27 | 262

▪ System processes to be supported by a system (usually only an indirect reference to

a solution by means of technical specifications for the desired system behavior or

process flow—for example, description of a process for authentication at an ATM)

▪ Specific properties and characteristics that a system should fulfill (usually direct

dependence on a solution by means of technical and operational specifications for

the desired system—for example, unique specification of the relevant data for

authenticating a user at ATMs) .

To consciously differentiate between the requirements with a different solution dependency,

we recommend that you explicitly classify requirements artifacts dependent on the

reference to a solution or the dependence on a solution—for example, as goals, scenarios,

and solution-dependent requirements (see [Pohl2010]).

Goal-oriented descriptions (goals):

▪ Goal-oriented descriptions document (by means of goals) the intention of the system

without addressing the implementation (solution). They are therefore the most

abstract form of a documented requirement and require, for example, that a

customer must be able to withdraw money from their account in any city—regardless

of how that can be implemented.

▪ Goals can be described, for example, in natural language in pure text form, with and-

or trees, or with independent notations such as i*. Regardless of the form of

presentation, the main point of goals is to achieve a system understanding to thus

recognize the required added value of the planned system.

Scenario-oriented descriptions (scenarios):

▪ By way of example, scenario-oriented descriptions document (using scenarios) the

desired process to be supported from the user perspective (sometimes also from the

system perspective). Scenarios thus describe possible sequences of interactions to

fulfill one or more goals. They often supply the context required for the requirement

by, for example, describing the process of withdrawing money at an ATM. Scenarios

therefore usually cover several atomic requirements.

▪ Scenarios can be described, for example, with structured templates (e.g., use case

templates) in pure text form as a type of story, or based on models using activity

diagrams, business process models (e.g., BMPN), sequence diagrams, etc.—see IREB

CPRE module "Requirements Modeling" [CHQW2022].

Solution-oriented descriptions (solution-based requirements):

▪ Solution-oriented descriptions document (using solution-based requirements)

specific requirements for, for example, the functionality or performance of a system

or individual components. They describe the data, functions, system behavior,

statuses, and quality required to fulfill the goals and to implement the scenarios. They

must therefore be understood as "classic" requirements which must result in a

solution—for example, "After successful authorization, the system must give the

customer the opportunity to withdraw cash amounts of between €50 and €500. The

selected amount must be divisible by €10 to enable disbursement."

Requirements Management | Handbook | © IREB 28 | 262

▪ Solution-oriented requirements can be described in either natural language as classic

textual requirements, or via model-based notations (e.g., UML). Solution-oriented

requirements generally cover all requirements for the classic system views: data,

functions, and behavior of the planned system. They are therefore the most specific

descriptions, see IREB CPRE module "Requirements Modeling" [CHQW2022].

2.1.3 Levels of detail for Requirements—Twin Peaks Model

In practice, detailing requirements is only rarely a strict, sequential (waterfall) process that

begins with rough requirements artifacts and then turns these step by step into

requirements artifacts at a fine level of detail which, in the next step, are then used as the

basis for the creation of a system architecture. In real life, at the beginning of the process,

there are usually requirements with very different levels of detail on the one hand, and on the

other hand, an early interaction between requirements and system architecture, which

means that there are mutual influences between the system architecture or solution

decisions and the requirements.

Figure 1: Twin peaks model

Figure 1 illustrates this relationship in the twin peaks model{ XE "Twin peaks model" }

[Nuse2001]. The vertical axis represents the level of detail of the requirements or the system

architecture, while the horizontal axis represents the solution dependency, that is, the

increasing alignment from problem description to implementation. The figure shows that an

Requirements Management | Handbook | © IREB 29 | 262

increasingly detailed requirement description (on the left) is developed iteratively in parallel

with an increasingly detailed system architecture (on the right), and that the description and

the architecture supplement each other. Although the figure shows, for simplification

purposes, the same levels for the detailing of the requirements and for the system

architecture, different levels of detail are in fact possible. The intention behind the figure is

essentially to show the necessity for different levels of detail for documenting requirements

(see also [BBHK2014]).

Unfortunately, there is no general agreement on the number of levels of detail that are

required and useful on the requirements side. The required level of detail{ XE "Abstraction

level" } for requirements depends on many factors, as the following examples show:

▪ System context and domain: If only a small change is to be executed within a well-

known system environment, a lower level of detail may be necessary than for a

completely new development.

▪ Expertise and proximity of the stakeholders: In a project environment with

experienced and skilled requirements engineers, architects, developers, and testers,

a lower level of detail is often required than would be the case for a distributed project

team and development team with supplier relationships.

▪ Accepted levels of freedom in the implementation: In a project environment in which

the client and stakeholders are thinking purely in terms of results, and the way in

which the result is achieved is irrelevant (e.g., representation of account movements),

the solution space has to be less restricted with requirements details than in an

environment where security is critical (e.g., authorization on login).

For the reasons listed above, the number of detail levels or the level of detail of the

requirements must be defined on an individual basis (e.g., on a project-specific basis). This

level of detail can differ even within a project depending on the specific system object under

consideration. In principle, a requirement should be detailed to the extent that:

▪ All stakeholders have reached a common understanding of the requirements and it is

clear to everyone exactly what is required. This is particularly true for the group of

stakeholders who have to implement the requirement.

▪ The remaining degrees of freedom for the design of the solution are so small that

further precision would generate more costs than benefits. This means that the

requirements must be detailed to an accepted residual risk that, due to the remaining

degrees of freedom, an undesired solution will arise.

▪ The requirements are specified to the extent that the subsequent solution is clearly

verifiable (testable) by means of the requirements—that is, the solution can be

accepted based on the specification.

Note: Three levels of detail have proven to be worthwhile in many projects—even though these

levels often bear different names, this has proven to be a practicable level of detail (e.g.,

product requirement level, user requirement level, system requirement level).

Requirements Management | Handbook | © IREB 30 | 262

Literature also offers a number of suggestions for structuring requirements at different

levels of detail.

▪ [WiBe2013] suggests classifying requirements as "business requirements", "user

requirements", and "system requirements". [Eber2012] proposes detailing

requirements via a classification according to market, product, and component

requirements.

▪ [RuSo2009] describes five levels of detail, from the rough overall intention with its

goals, through to technical specification and separation into hardware, software, and

other components.

▪ [PHAB2012] defines three levels of details for the domain of embedded software-

intensive systems (embedded systems): "functional layer", "logical layer", and

"technical layer".

▪ [BBHK2014] also describes three levels of detail, "system layer", "function group

layer", and "hardware/software layer" for detailing requirements for software-

intensive embedded systems.

2.2 Forms of presentation for documenting requirements

There are a number of different forms of presentation (or rather, forms of description) for

documenting requirements. The form of presentation used to document requirements

depends on various factors, for example:

▪ Purpose of the documentation (e.g., formal check, review, discussion)

▪ Recipient of the information (e.g., product manager, architect, tester, developer)

▪ Classification of the requirement (e.g., use case, performance requirement)

The form of presentation is also dependent on the experience and the personal

"preferences" of the person documenting the requirement.

In the following, we differentiate between the following forms of presentation for

documentation:

▪ Textual presentation of requirements using natural language:

Natural languages (e.g., German, English, Spanish) are languages which are used on a

daily basis to document and exchange information. In textual descriptions, we find

the following forms of presentation for requirements, for example:

▪ Pure prose

▪ Phrase templates (e.g., "THE SYSTEM must/should/will PROCESS VERB")

▪ Structuring templates (e.g., to describe use cases)

▪ Model-based presentation of requirements using modeling languages:

In comparison to natural languages, modeling languages are languages created

artificially. Modeling languages for documenting requirements include:

▪ Unified Modeling Language (UML)

▪ Business Process Model and Notation (BPMN)

▪ Event-driven Process Chain (EPC)

▪ System modeling language (SysML)

Requirements Management | Handbook | © IREB 31 | 262

▪ Entity relationship model (ERM)

▪ Petri nets

▪ Formalized presentation of requirements with formal languages:

Formal languages are also artificially created languages. With formal languages, the

focus is on a description that is free of contradictions, rather than on communication.

Formal languages include:

▪ Mathematical-algebraic descriptions

▪ Set theory forms of description

▪ Logical descriptions and operators

To make the documentation in the Requirements Engineering process—and the

management and maintenance of the documentation as part of requirements

management—manageable, as the requirements manager, you should define, as early as

possible, which type of requirement is to be persisted, with what solution dependency, at

what level of detail, and with what form of presentation.

You should also define, at an early stage, the language in which textual and model-based

requirements are to be documented to avoid unnecessary duplicated effort for subsequent

translation.

Note: The language of the requirements is usually determined by the project language or the

national language of the stakeholders and suppliers involved. However, you can also define, for

example, that requirements from departments are documented in the national language (e.g., in

German for projects in Germany) to achieve greater involvement and acceptance, and that

system requirements that have to be implemented by a supplier are documented in English—

that is, the documentation language can be different depending on the level of detail.

2.3 Describing a requirements landscape with a requirements

information model

In this chapter, we explain how you can describe a requirements landscape and document it

with a requirements information model{ XE "Requirements Information Model" } (RIM). As

explained in definition 2-2, a requirements landscape defines the following dimensions:

▪ Classification to be used for the types of requirements

▪ Classification to be used for the dependence of requirements on a solution

▪ Required levels of detail for each type of requirements artifact

▪ Forms of presentation to be used for each type of requirements artifact

You can use a tabular list to describe the requirements landscape. Here, you document the

different dimensions of the requirements landscape (type of requirement, solution

dependency, levels of detail, form of presentation). Table 1 shows an example of a

requirements landscape.

Requirements Management | Handbook | © IREB 32 | 262

 Solution Dependency

Level of detail Requirement

type

Low (Goal) Medium (Scenario) High (Solution-

Based Req.)

Level 1:

Business level

Constraint Business goal

(textual)

Not relevant Not relevant

Quality

requirement

Service quality

(textual)

Not relevant Not relevant

Functional

Requirement

Not relevant Business process

(BPMN)

Business rule

(textual)

Level 2:

User level

Constraint Usability goal Not relevant Not relevant

Quality

requirement

Not relevant User interface

(mock-up)

Not relevant

Functional

Requirement

Not relevant User use case (use

case diagrams,

templates)

User requirement

(textual, ER

models)

Level 3:

System level

Constraint Not relevant Not relevant Interface

guidelines

(textual)

Quality

requirement

System quality

goal

(textual)

Not relevant System quality

(textual)

Functional

Requirement

Not relevant System use case

(MSC, AD)

Interface

requirements

(textual, MSC)

Table 1: Example definition of a requirements landscape

Column 1 contains the description of the levels of detail (here, Level of detail 1: Business

level, Level of detail 2: User level, and Level of detail 3: System level). Column 2 contains the

classification by requirement type (here, constraint, quality requirement, and functional

requirement). Columns 3–5 describe the dependency of the requirement on the solution by

classification into goals, scenarios, and solution-based requirements. This table therefore

describes all combinations theoretically possible for types of requirements artifacts.

Via the cells, you can select which types of requirements artifacts are relevant or not

relevant for your specification. For the relevant requirements candidates (requirements

Requirements Management | Handbook | © IREB 33 | 262

class), you can now define the desired forms of presentation for each artifact type for your

requirements landscape (e.g., user level, solution-based description for functional

requirements is via entity-relationship models or in text form). Here, you can also assign a

dedicated, company-specific designation (e.g., user level, solution-based description for

functional requirements = user requirements) to the selected requirements candidates.

When defining the requirements landscape, you always have to balance the benefits that

more extensive requirements documentation would provide against the costs that would be

incurred (see [Glin2014], [Davi2005]). It may well be the case, for example, that you describe

requirements only at two levels of detail, based on scenarios and solution-based

requirements.

However, the requirements landscape should be defined explicitly—and not just by chance—

and should, for example, be documented in the requirements management plan so that it is

clear to all the stakeholders which types of requirements artifacts are to be documented and

at what level of detail. A tabular description of the requirements landscape makes sense

here (see Table 1). In addition to the tabular description, it also makes sense to create an

information model in the form of an entity relationship diagram or a class diagram to

describe relationships between types of artifacts at one or different levels of detail. In the

following, we refer to this descriptive information model as the requirements information

model (RIM).

In addition to the specifications made above with regard to which type of requirement is

documented, with what solution dependency, at what level of detail, and in what form,

further aspects can be added to the requirements information model:

▪ Which attributes are used for which types of artifacts? (See Chapter 3)

▪ Which views are supported? (See Chapter 3)

▪ Which evaluation criteria are planned for requirements? (See Chapter 4)

▪ Which roles are responsible for maintenance and change? (See Chapter 5)

▪ Which traceability relationships between requirements artifacts and upstream and

downstream artifacts are documented? (See Chapter 6)

▪ How are variants of requirements documented? (See Chapter 7)

With this information, the requirements information model makes up a significant part of the

requirements management plan (RMP). Therefore, the requirements information model

must be accessible for all stakeholders to view at any time.

Requirements Management | Handbook | © IREB 34 | 262

!

Figure 2 shows the requirements information model of Peter Reber. Based on

Table 1, Peter has divided his requirements information model into three levels

of detail (business level, user level, system level). From the 27 types of

requirements artifacts theoretically possible, Peter has selected 13 to specify

the requirements for the new bank system.

Goals at the business level (level of detail 1) are differentiated into business

goals, business rules, service quality, and business processes.

Here, business goals usually describe constraints that have to be taken into

account in the implementation—for example, the planned start date, company

guidelines, etc.

Business processes can be assigned to the category of scenarios and mainly

describe functional requirements. Peter uses BPMN to describe the business

processes.

Business rules describe, at a high level, functional requirements that have to be

considered in the subsequent work steps and that restrict the solution space.

For Peter, business rules include, for example, limits for the amount for online

transfers per day.

Figure 2: Example of a requirements information model

At the user level, Peter wants to document usability goals, requirements for the

user interface (GUI), as well as user use cases and user requirements. User use

cases should be described with use case diagrams and templates, for example.

Requirements Management | Handbook | © IREB 35 | 262

User requirements and user interface requirements are described from a

solution-based view. Mock-ups, textual descriptions, or ER models should be

used here.

At the IT level there are interface guidelines, system quality goals, system use

cases, interface requirements, and system quality requirements. The forms of

presentation at system level are based more strongly on IT development, which

means that here, in addition to textual requirements, model-based notations

such as activity diagrams and message sequence charts (sequence diagrams)

are used.

In the present model, only the solution dependency dimension has been

described at different levels of detail. The requirement type dimension

(constraint, quality requirement, functional requirement) is presented only

structurally on the right-hand side in this model. The corresponding form of

presentation has been completely ignored in the requirements information

model because, when more than two dimensions are presented, the model soon

becomes unclear. If a modeling tool is used, here you may be able to offer

different views of the information model to avoid overloading a model view.

A further option for including more details in a requirements information model

is to use annotations for a class in order to describe the different dimensions of

the class (see Figure 3).

Figure 3: Example requirements information model with annotation of the dimension

details

As an alternative to the requirements information model, you can use a tabular

description (see Table 1) for the form of presentation or to assign the levels of

detail.

Requirements Management | Handbook | © IREB 36 | 262

To check the requirements information model, you can apply the following control questions:

▪ Check for formal completeness:

Does the requirements information model clearly show, for each class of

requirements, which requirement type it contains, how dependent this requirements

class is on a solution, what level of detail the requirements class exists at, and with

which form(s) of presentation it is documented?

▪ Check for content relationships:

Does the requirements information model clearly show which levels of detail exist and

how they are connected? Is it clear how requirements at the different levels of detail

are dependent on one another?

▪ Check for adequacy:

Are all the selected requirements classes appropriate to document sufficiently

detailed, complete, and consistent requirements so that the subsequent activities

(e.g., development and testing) can fully complete their tasks?

2.4 Content for the requirements management plan

When you create the requirements landscape, you create a significant first part of your

requirements management plan. With the requirements landscape, you define which types

of requirements artifacts you want to consider, the number of levels of detail that you want

to define requirements on, and the forms of presentation that you want to use to specify

types of requirements artifacts (see Table 1 and Figure 2). By describing the requirements

landscape (e.g., with a requirements information model), via the requirements management

plan, you can ensure that all stakeholders involved in the project have a shared

understanding of the types of requirements artifacts to be used to document requirements,

as well as the levels of detail and forms of presentation to be used when documenting

requirements.

2.5 Literature for further reading

[BBHK2014] Braun, P.; Broy, M.; Houdek, F.; Kirchmayr, M.; Müller, M.; Penzenstadler, B.;

Pohl, K.; Weyer, T.: Guiding Requirements Engineering for software-intensive

embedded systems in the automotive industry. Computer Science - R&D 29(1):

21–43 (2014).

[Eber2012] C. Ebert: Systematisches Requirements Engineering. Dpunkt, 4th edition, 2012

(available in German only)

[CHQW2022] Thorsten Cziharz, Peter Hruschka, Stefan Queins, Thorsten Weyer: Handbook

Requirements Modeling, Education and Training for IREB Certified

Professional for Requirements Engineering, Advanced Level Requirements

Modeling, IREB, Version 2.0.0, July 1, 2022.

[PHAB2012] Pohl, K., Hönninger, H., Achatz, R., Broy, M. (Eds.): Model-Based Engineering of

Embedded Systems - The SPES 2020 Methodology, Springer 2012.

Requirements Management | Handbook | © IREB 37 | 262

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.

Springer, 2010.

[WiBe2013] K. Wiegers and J. Beatty: Software Requirements. 3rd Edition. Microsoft Press,

2013.

Requirements Management | Handbook | © IREB 38 | 262

3 Assigning attributes and views for

requirements

In this chapter, we look at how requirements management defines requirements attributes{

XE "Requirements attribute" } and which requirements attributes have to be used in projects.

The chapter also looks at how we create, use, and change attribute schemas and views.

Definition 3-1:

An attribute{ XE "Attribute" } is a characteristic property of a

unit. (From the IREB Glossary [Glin2014])

The standard ISO/IEC/IEEE 29148:2011 [ISO29148] adds the aspect of how attributes are

evaluated to the definition of an attribute: "an inherent property or characteristic of an entity

that can be distinguished quantitatively or qualitatively by human or automated means."

In connection with requirements management, attributes are therefore properties of the

requirements, for example, the processing status (attribute "Status"). As meta-information,

attributes are not usually mixed with the requirement description. Instead, they are

documented and managed separately—for example, as a separate column in a tabular list of

requirements and as a separate field in a requirements database. It is not only textual

requirements that can have attributes, but also elements of a UML model [CHQW2022].

Despite having the same name, requirements attributes are not synonymous with the

attributes of a class in a class diagram. These latter attributes are part of the content of the

requirement but they are not meta-information—that is, they are not requirements

attributes in the sense of this chapter. Requirements of all types and levels of details can

have attributes, but sometimes they do not have the same attributes. Change requests also

have attributes (see Chapter 5). Entire documents can be characterized with attributes, such

as a status or a version number.

3.1 Objectives of assigning attributes and examples of the use

of attributes in management activities

As the definitions above indicate, in requirements management, attributes are used to

categorize requirements, specifically with regard to meta-information required for release

planning or management, for example. Attributes allow you to get an overview of the

requirements. For extensive projects in particular, nobody has an overview of all of the

requirements. In this situation, for each requirements-based activity to be performed in

software engineering, attributes help you to concentrate on the important information—on

the requirements defined and their relevant properties. Of course, depending on the activity,

you will be interested in different extracts from the information.

Requirements Management | Handbook | © IREB 39 | 262

Attributes of a requirement typically answer a number of important questions, for example:

"Who was the last person to change a requirement and when did they do so?" or "Which

requirements are planned for Release 1?" or "How much effort is Release 1 likely to incur

overall?". From a practical perspective, you do not enter all of the meta-information for a

requirement in one single free-text field. Each attribute is managed in a separate field.

Value lists are often specified here, and these are standardized for all requirements. For

example, it is easier to evaluate the attribute "Priority" if it permits only the values "Low",

"Normal", and "High" or another grading or values list. If this were a free-text field, comments

such as "Quite important", or "Mr. Miller said the requirement is important" could be entered

here. This type of content does not particularly support the differentiation between the most

important and the less important requirements. This differentiation is much easier if, by

simply using filters, you can display a list of all requirements categorized as "High". Which

format and which attribute values make most sense for the priority, for example, depends,

amongst other things, on which views and decisions are to be supported by the priorities (see

Chapter 4).

The objective of assigning attributes to requirements is to enable team members and other

stakeholders to document and evaluate information on requirements in a structured manner

as part of the Requirements Engineering process [Pohl2010].

You should think carefully about which attributes are required and the values permitted for

the attributes at the very beginning of a project, as it is not easy to change an attribute

schema retrospectively (see Section 3.5). Unfortunately, there is no one single attribute

schema that fits everywhere and every situation ideally. The decisive factor is always which

attributes you want to subsequently evaluate and how you want to do this.

Various authors propose different compositions of attributes which, in their experience, have

proven practical. According to the CPRE Foundation Level, the attributes in Table 2 and

Table 3 are some of the important requirements attributes [PoRu2015].

Attribute Type Meaning

Identifier Short, unique identification of a requirements artifact in the set of

requirements under consideration

Name Unique, characteristic name

Description Describes the content of the requirement in compact form

Version Current version of the requirement

Author Designates the author of the requirement

Source Designates the source or sources of the requirement

Justification Describes why this requirement is important for the planned system

Requirements Management | Handbook | © IREB 40 | 262

Attribute Type Meaning

Stability Designates the probable stability of the requirement here, stability is the

scope of changes expected for this requirement in the future; possible

differentiation: "Stable", "Volatile"

Criticality In the sense of an estimation of the level of damage and probability of

occurrence

Priority Designates the priority of the requirement with regard to the selected

features for prioritization—for example, "Importance for acceptance on

the market", "Order of implementation", "Damage or opportunity costs

of non-realization"

Table 2: Frequently used attribute types [PoRu2015].

Another proposal for a compoistion of attributes:

Attribute Type Meaning

Owner Designates the person, stakehold-er group, or organization(al unit)

responsible for the content of this requirement

Requirement

type

Designates the type of requirement (e.g., functional requirement,

quality requirement, or constraint) dependent on the differentiation

schema used

Status of the

content

Designates the current status of the content of the requirement—for

example, "Idea", "Concept", "Detailed content"

Status of

verification

Designates the current status of the validation—for example,

"Unchecked", "In evaluation", "Checked", "Failed", "To be corrected"

Status of

agreement

Designates the current status of the agreement—for example, "Not

agreed", "Agreed", "Conflicts"

Effort Forecast/actual implementation effort for this requirement

Release Name and/or number of the release in which the requirement is to be

implemented

Legal liability Indicates the degree of legal liability of the requirement—for example,

"Must", "Recommended", and "Optional"

Cross-

references

Designates the relationships to other requirements: for example, if you

know that the prerequisite for realizing this requirement is the prior

realization of another requirement (see Chapter 6)

Requirements Management | Handbook | © IREB 41 | 262

Attribute Type Meaning

General

information

In this attribute, you can document any information considered

relevant for this requirement: for example, if agreement to this

requirement is planned for the next meeting with the client

Table 3: Frequently used attribute types [PoRu2015].

The list above contains all of the attributes named in the standard ISO/IEC/IEEE 29148:2011

[ISO29148], as well as further attributes.

To document traceability, in addition to documenting the source, it would be useful to

document in a further attribute the technical component in which a requirement is

implemented (attribute "Technical component") and the test cases used to test the

requirement (attribute "Test cases") (see Chapter 1).

[Pohl2010] recommends a further attribute schema with seven attribute categories. This

schema differentiates between the following categories: identification, context

relationships, documentation aspects, content aspects, agreement aspects, validation

aspects, and management aspects. Each of the categories mentioned contains a number of

possible attributes.

▪ Identification: These are the attributes that allow an attribute to be identified. They

include the ID and the name, which should describe the content of the requirement as

meaningfully as possible.

▪ Context relationships: These attributes document the relationships between the

requirements and the context—for example, the source, the justification, the person

responsible, and any stakeholders affected and with whom changes to the

requirement must be agreed.

▪ Documentation aspects: Here you define the form of presentation for specifying a

requirement (free text, UML model, text template, etc.), a link to a document that

contains the specification rules, and the validation status of the requirement

(documentation) (e.g., unchecked/in evaluation/partially checked/checked/to be

corrected/released).

▪ Content aspects: These attributes document and classify the content of the

requirement. In particular, this includes the description of the requirement, but also

the type of requirement, comments from the person who created the requirement,

the status of the content (idea/rough content/detailed content) and cross-references

to other development artifacts (traceability relationships).

▪ Agreement aspects: These attributes document the agreement amongst the

stakeholders—for example, an agreement status (not known/conflicts/in

agreement/agreed), a validation status for the agreement (unchecked/in

evaluation/partially checked/checked/to be corrected/released), and one free-text

field each for recognized conflicts and decisions.

▪ Validation aspects: The validation checks the quality of a requirement with regard to

the three dimensions of content, documentation, and agreement. Here you can

Requirements Management | Handbook | © IREB 42 | 262

document the following: compliance with initial criteria for validation (i.e.: can

validation start?), techniques for validation, the current validation step, and the

overall status of validation (unchecked/in evaluation/partially checked/checked/to be

corrected/released).

▪ Management aspects: These attributes document the status of a requirement and

other management information. This information includes stability, criticality and

priority, legal liability, and further status information. It also includes the author of the

requirement, the version, change history, system release, and expected and actual

effort.

Practical tip: To avoid subsequent changes as far as possible, think precisely at an early stage

about which attributes your attribute schema should contain. Add only those attributes to the

attribute schema that fulfill two criteria: (1) You are sure that the person responsible will maintain

this attribute during the course of their work; (2) It is clear who benefits from this attribute by

evaluating it, when they benefit, and how they benefit. For the effort involved in documenting

this meta-information to be worthwhile, both criteria must be fulfilled.

3.2 What is an attribute schema?

Definition 3-2:

"The set of all defined attributes for a class of requirements

(e.g., functional requirements, quality requirements) is called an

attribute schema." ([PoRu2015], Section 8.1.2)

An attribute schema describes the relevant requirements attributes for a project and/or a

company [RuSo2009]. In addition to the name and definition of the attribute, the attribute

schema also includes the format of the attributes (Text or number? How many characters

are permitted for the attribute?) and the specification of the permitted values or value

ranges.

In requirements management, providing an attribute schema (template-based) for

requirements brings the following advantages [Pohl2010]:

▪ Accurate and consistent definition of the required information: A predefined

schema defines which information or attributes for requirements must be entered

and which values are allowed for this information.

▪ Gap detection: It is possible to detect gaps in the elaboration of requirements if

certain attributes are empty.

▪ Support for employee training: Employees who have already worked with the same,

or similar, attribute schemas in a previous project, for example, can quickly find the

necessary information and where particular information on the requirement should be

documented.

Requirements Management | Handbook | © IREB 43 | 262

▪ Finding the same information in the same place: As all requirements within a project

are documented on the basis of the same attribute schema, there is a clear

specification of where which information—such as the author—can be found for a

requirement.

The attribute schema is part of the requirements management plan, but not the

requirements landscape. Sometimes company standards have to be observed, or the use of

an official standard or industry standard is stipulated. These standards usually specify the

attributes to be used and their values. This standardized attribute schema then allows cross-

project comparable evaluations via requirements management (see Chapter 8).

In addition to the requirements manager, other roles in the development process and in the

company use the meta-information about requirements that is contained in the

requirements attributes. The project manager, for example, is regularly interested in the

processing status of requirements. Therefore, when defining an attribute schema, the

information needs of other stakeholders in the Requirements Engineering process must also

be taken into account. We will look at the different roles and the information they need again

later on in connection with views (see Section 3.6). Ultimately, the views required are the

basis for defining the attribute schema.

3.3 The benefits of an attribute schema

Attributes support a number of requirements management tasks as well as other

management tasks:

▪ Views: Attributes are the basis for the definition and implementation of views in a tool

(see Section 3.6).

▪ Prioritization: The respective priority of a requirement is documented in one or more

corresponding attributes. Multiple attributes can be defined for different prioritization

criteria. In turn, these priorities support decisions that are based on the priorities—for

example, the release planning. Usually, you want to implement the most important

requirements first. In turn, this importance can be dependent on multiple attributes—

for example, when benefits and costs are weighed up against one another. You can

find more information about prioritization in Chapter 4.

▪ Project management: The project manager is interested in the forecast (or actual)

realization effort involved with each requirement. This is recorded in a corresponding

attribute. This attribute allows you to create totals, and you can therefore use it to

determine the total effort for a group of requirements (for example, all important

requirements or the requirements for one release). It also supports project monitoring

during the course of the project.

Project management reports that contain only the pure number of requirements with

a specific status do not give a true picture of the status of the project because not

every requirement is of the same size. However, if, in these reports, you weight the

requirements according to their realization effort, you get a very good picture of the

status of the entire project. This is particularly true if the status attribute of the

requirements covers the entire lifecycle—that is, not just whether a requirement has

Requirements Management | Handbook | © IREB 44 | 262

been accepted and handed over to development, but also whether the requirement

has been realized, whether the implementation has already been tested, whether the

requirement has been released by quality assurance and deemed free of errors,

whether the customer has accepted the associated functionality, and whether the

requirement has been delivered.

▪ Release management: The priorities support the release definition and release

management—that is, the management of the different software statuses delivered

to customers. Release management is supported by a corresponding "Release"

attribute. This attribute documents which requirements are implemented in which

release. In many cases, a distinction will be made between the desired and the

planned release in order to reflect the difference that often occurs between these

two realities (see Chapter 5).

▪ Risk management: The attributes "Criticality", "Stability", and "Legal liability" support

the identification and evaluation of risks associated with a requirement. In turn, this

risk evaluation is relevant for the project manager and the release planning. The

decisive factors for the definition of attributes to support risk management are the

criteria used in risk management and the evaluations required.

▪ Traceability: Being able to trace requirements is important if, during change

management, you want to be able to foresee the effects of changes to requirements

or resolve conflicts between contradictory requirements. Traceability should be

achieved in both directions: to the source of a requirement and to later artifacts such

as technical components and test cases. However, dependencies between

requirements of the same type and refinement relationships between requirements at

different levels of detail should also be documented, provided the benefits of doing

so justifies the effort involved. For more information about the traceability of

requirements, see Chapter 6.

▪ Variant management: As part of variant management (see Chapter 7), attributes can

be used to assign requirements to specific variants and product configurations.

▪ Reporting: Attributes form the basis for reports, such as an evaluation of the

respective number of requirements with a specific status (e.g., "Released" or

"Tested"). You can find more information about requirements management reports in

Chapter 8.

3.4 Designing an attribute schema

The attribute schema{ XE "Attribute schema" } is part of the requirements management

plan. It should be defined before the documentation of requirements begins and should be

agreed with all stakeholders of the Requirements Engineering process. Subsequent

enhancements and changes are usually only possible with great effort.

To design an attribute schema for use in a specific project, we recommend the following

steps, which are discussed in more detail in the subsequent sections:

1. Identify sources of attributes

2. Select the attributes

3. Define permitted attribute values and properties of attributes

Requirements Management | Handbook | © IREB 45 | 262

4. Define dependencies between attributes and their values

5. Provide support for recording data

6. Document the attribute schema

3.4.1 Identifying Sources of Attributes

To select attributes, you have to first identify the relevant sources for attributes. Sources

that can be used to select attributes include:

▪ An attribute schema from a similar project (for example, similar in scope, number of

employees involved, etc.)

▪ A reference schema of the organization or another standard, as described in

Section 3.1

▪ Organizational rules that determine, for example, which attributes must be used in all

attribute schemas in all projects

▪ Stakeholders of the Requirements Engineering process

You can adopt schemas from standards or adapt them as required.

If, in a (generally larger) company, attribute schemas are defined in many different projects

(e.g., through reuse and subsequent adaptation), it makes sense to define general rules for

creating an attribute schema. In doing so, you can define, for example, that selecting the

attribute "Stability" for an attribute schema also requires the selection of the attribute "Risk",

and therefore both attributes must be present in the attribute schema for the respective

project. This makes sense if, when assessing the stability of a requirement, the company also

wants to evaluate in parallel how highly the risk of the requirement should be evaluated in

terms of, for example, scheduling.

Furthermore, when selecting attributes for an attribute schema, a company can first define

generally which attributes must always be considered in every project—for example, to

enable cross-project evaluations. These attributes are then present in every project and

should be declared as mandatory fields.

Another source of attributes for an attribute schema are the stakeholders of the

Requirements Engineering process (see also Section 3.6). The stakeholders are identified

first and then their needs.

!

Peter Reber decides to use the IREB attribute schema for his first draft (see

Table 2 and Table 3).

The stakeholders of the Requirements Engineering process are the project

managers, the business analysts, the IT security experts, the usability expert,

and the Customer Advisory Board, but also legal risk management

requirements such as BASEL II.

When a reference system is adopted, it is easy for unnecessary attributes to

be adopted as well. Therefore, Peter Reber first asks each stakeholder

individually for their needs. If an attribute contained in the reference schema

Requirements Management | Handbook | © IREB 46 | 262

is not specified, Peter will check whether anyone really needs it. It may be the

case that the stakeholders have simply forgotten to mention it.

In the first step, the stakeholders name the following attributes:

▪ Project manager: status of and effort involved in the requirements, the

release that a requirement is planned for, and the status of the

artifacts, but above all, an overview (weighted by effort) of the

proportion of requirements (of a release) with each specific status

▪ Business analyst: a priority value that measures the benefit of a

requirement for the bank

▪ IT security expert: criticality

▪ Usability expert and Customer Advisory Board: priority in the sense of

"benefits for the user/customers of the bank"

▪ BASEL II: "Author" and "Version" allow you to trace who changed what

and when, "Justification" documents the reason. The attributes

"Stability" and "Legal liability" are used for risk management

3.4.2 Selecting attributes

The attributes must be selected specifically and appropriately for the project so that they

are actually of benefit. This applies regardless of whether you are using a reference schema

or defining a new attribute schema.

If you use a reference schema as a basis, for every single attribute, check whether you need

it and if so, what for. The attribute is then adopted, adapted, or (on a project-specific basis)

removed. You can also add new attributes. If you do not use a reference schema, you have

to create a new attribute schema. To do this, you have to identify corresponding attributes—

for example, by asking the relevant stakeholders (see step 1).

The ID (identification) of a requirement is particularly important when you are assigning

attributes to requirements. It is used to identify each requirement uniquely and it is a

mandatory attribute in every attribute schema. Within the company, you have to define the

context in which the requirement is unique. The context can be based on the organizational

structure and can define, for example, that the requirement has to be unique only within

departments. Another option for delimitation can lie in technical constraints—for example,

the requirement has to be unique only in the database used.

In this case, you have to define the procedure for handling requirement IDs that are

exchanged between these databases, as this type of exchange can lead to ambiguous IDs

(because they appear more than once).

To select attributes for an attribute schema and to evaluate whether a schema is complete,

you can use the seven categories presented in [Pohl2010] as a checklist: identification,

context relationships, documentation aspects, content aspects, agreement aspects,

validation aspects, and management aspects (see Section 3.1). All seven categories should

be covered in an attribute schema.

Requirements Management | Handbook | © IREB 47 | 262

To define an attribute schema using the categories specified, we recommend you perform

the following activities:

▪ For each category, check which of the proposed attributes has already been selected

for the project (e.g., via the selection of a reference schema). Note that sometimes,

the same attribute has different names in different schemas, or the same designation

is used to describe different content. For example, the "Source" attribute in the

"Context relationships" category can be reflected with an attribute "Basis" in a

reference schema. To ensure that this match can be discovered, the semantics of the

respective attribute must be documented and traceable.

▪ Systematic consideration of the individual categories and the attributes proposed

there. In this activity, for each attribute proposed, the benefits of the attribute for the

current project must be evaluated and checked. Only those attributes where the

stakeholder who will use it is clear, and for what purpose, should be used.

▪ Expansion of the categories or the reference schema. When a new attribute is

identified during the analysis for the selection of attributes, and this new attribute

does not exist yet in the reference schema or in one of the categories, analyze

whether it makes sense to expand a category or the reference schema. In this

activity, you have to weigh up whether a new attribute should be added to the

reference schema or a category to be used as a proposal for the definition of an

attribute schema in subsequent projects. You have to estimate how likely it is that a

new attribute will be used in most of the subsequent projects. If it will be used

frequently, it makes sense to expand the reference schema. If it is unlikely that the

new attribute will be used very often, it should be documented in one of the

categories.

In processes for defining an attribute schema, it is often the case that a lot of attributes are

defined initially because, for example, different stakeholders want to record and evaluate

information for a requirement from different perspectives. In practice, the result is often that

attributes are not filled and are not used for good reason. In this case, the attribute schema

has to be adapted, which is not always easy (see Section 3.5).

To avoid this type of subsequent adjustment as far as possible, the attributes should be

limited to a practical quantity that can be used. Therefore, only attributes that support a

clear goal or a specific task should be used. An example of such an objective can be that the

project manager wants to perform an earned value analysis.

To do this, the manager has to know, for example, the degree of completion of the project,

and thus requires a calculation, weighted by effort, of the proportion of the requirements

that has already been completed. Each requirement therefore needs two attributes: one

"Effort" attribute and one status attribute that receives the value "Completed" as soon as

the work on the requirement has been completed. For a more differentiated calculation of

the degree of completion, partial degrees of completion can also be considered for earlier

status values (e.g., a degree of completion of 80% if the requirement has been implemented

but has not yet been tested). Of course, the formula for the degree of completion can use

only status values that the attribute will actually receive. This may sound obvious, but when

Requirements Management | Handbook | © IREB 48 | 262

the attribute schema is changed, the consistency between the attribute schema and

views/reports can easily be lost, even while the schema is in the process of being defined.

!

During the discussion with the stakeholders, it is established that they think it

is unnecessarily complicated to use three different status attributes. The

decision is therefore taken to use only one single attribute "Status". This

attribute can adopt the following values to reflect the lifecycle of a

requirement or a change: in progress, in evaluation, released, changed,

rejected, deleted, implemented, tested, completed.

The stakeholders have not specified the following attributes (see Table 2 and

Table 3): identifier, name, description, source, owner, requirement type,

cross-references, general information. These attributes are important for

the requirements manager. The different dimensions of the requirements

landscape from Chapter 2 must also be taken into account, and only the

requirement type is already included in the schema.

Therefore, the first draft of the attribute schema corresponds to that of the

IREB, with the following differences: there is only one status attribute instead

of three, and there are two different priority values that each measure the

benefit for the different stakeholders: from the view of the bank and the view

of the bank customers. The following requirement attributes are added to

the requirement type: solution independence, form of presentation, and level

of detail.

Practical tip: Less is more. If you are in any doubt, leave an attribute out initially. It is better to

add a new attribute later and maintain the content than for an attribute not to be filled at all, or

to be filled with nonsense or reluctantly and then possibly never used. That frustrates

employees and raises doubts about the sense of other attributes.

3.4.3 Defining permitted attribute values and properties of

attributes

The attribute schema also defines the permitted values for the attributes. For example, for

the attribute "Risk" or "Criticality", you can define that only the following values are

permitted to quantify the risk: high, medium, low, or none. This makes sense because, firstly,

it is not really possible to determine risks more precisely in advance, and secondly, this value

is used only to differentiate the particularly critical risks from the less critical risks. In a risk

management view, the risks can then be presented by category and different measures

defined for each category: from "Bears a risk", through "Take measures", down to "Cancel

project". The values must be clearly defined. For example: When is the risk of a requirement

deemed to be "High"? What basis is used to measure this? The probability of a problem, the

possible damage, or the product of both? How high does the risk have to be to be deemed

"High"?

Requirements Management | Handbook | © IREB 49 | 262

For example, the value "High" could be assigned only if an interruption to operations is

feared. These definitions must be communicated to all parties that maintain or evaluate this

status and should also be defined in the help text in the requirements management tool.

Furthermore, the attribute schema must also specify for the selected attributes whether (in

each case) they are mandatory or optional attributes. Both have their advantages and

disadvantages. If important attributes are not filled, reports based on these attributes will

not be complete. If, for example, the risk is not entered for a critical requirement (e.g.,

because it is not yet clear whether the risk is "High" or even "Catastrophic"), because this

field is empty, risk management will miss this requirement. In the worst case, this could mean

that a risk that puts the entire project into question is missed.

With online banking, for example, it may be better tactically to not introduce risky functions

until the risks caused by these functions are securely under control. If the attribute "Risk" is a

mandatory attribute, the person creating the requirement would have entered at least "High"

and would have noted in a comment field that this requirement should be checked again and

potentially given a higher value. However, the requirement would have already been

detected during risk management in the category of critical requirements. On the other

hand, mandatory fields can force people creating requirements to make statements too

early, with these statements not being checked or corrected at a later stage. It is sometimes

not possible to make evaluations at the point in time when a requirement is created. As long

as an attribute remains empty, a corresponding view can show that this requirement needs

to be edited and the expert team for security will take care of the requirement that has not

been classified yet.

Another property that has to be defined is whether several values or only one value can be

selected in the field for each requirement.

Instead of forcing the selection of a single value, you can also offer the following selection

for the attribute value: "All possible values are valid" or "No value is valid". In the case of "No

value is valid", you must make sure that this value is differentiated semantically from the

attribute not being filled (i.e., it is not equated with the attribute not being filled), because

selecting the value "No value is valid" is an intentional statement, whereas not filling the

attribute allows two interpretations: either the predefined selection options do not apply, or

the attribute has not been processed.

Requirements Management | Handbook | © IREB 50 | 262

!

The table below shows the attribute schema for our example bank. Mandatory

fields are marked with an asterisk:

Attribute Meaning Values

Identifier* Short, unique identification The bank's schema is: project

code + sequential number, so

in this case, OBA0001,

OBA0002, etc.

Name* Unique, characteristic name Free text

Description* Describes the content of the

requirement in compact

form

Free text

Version* Current version of the

requirement

The format of the versioning is

still to be defined

Author* Author of the requirement Only the following persons are

allowed to write requirements:

Peter Reber, Martin Geldmann

(business analyst), Anja Streng

(IT security expert),

Kirsten Uba (usability expert)

Source* Designates the source or

sources of the requirement

List of all stakeholders

Justification Describes why this

requirement is important for

the planned system

Free text

Stability Designates the probable

stability of the requirement

"Stable", "Volatile"

Criticality In the sense of an estimation

of the level of damage

multiplied by the probability

of occurrence (risk)

"Low", "Medium", "High"

Priority for bank Measures the benefit of the

requirements for the bank

"Low", "Medium", "High"

Priority for

customers

Measures the benefit of the

requirements for the bank

customers

"Low", "Medium", "High"

Requirements Management | Handbook | © IREB 51 | 262

Owner Designates the person,

stakehold-er group, or

organization(al unit)

responsible for the content

of this requirement

List of all stakeholders

Requirement type Type of requirement "Functional requirement",

"Quality requirement",

"Constraint"

Solution dependency Solution dependency "Goal", "Scenario", "Solution-

oriented requirement"

Level of detail Level of detail Level 1: Business scope

Level 2: User scope

Level 3: IT scope

Status* Status in the lifecycle of the

requirement

In progress, in evaluation,

released, changed, rejected,

deleted, implemented, tested,

completed

Effort Forecast implementation

effort for this requirement in

days; for requirements with

the status "Completed", the

actual value is entered here

Only whole or half values

Release Number of the release in

which the requirement is to

be implemented

Takes the form year/quarter,

e.g., 2014/3

Legal liability Indicates the degree of legal

liability of the requirement

"Optional", "Recommended",

"Must"

3.4.4 Defining dependencies between attributes and their

values

Attributes can be interdependent with regard to their values. When defining an attribute

schema, you can define, for example, that certain combinations of two attributes with

predefined attribute values are not allowed. For example, you can prevent a requirement

with the value "Volatile" in the "Stability" attribute simultaneously receiving the value

"Released" in the "Status" attribute. This ensures, for example, that only requirements that

are considered stable are approved for development.

However, it may also make sense to combine these two attributes in one attribute and offer

only the permitted combinations there. This is a solution particularly if the tool used does not

support the consideration of dependencies between attribute values.

Requirements Management | Handbook | © IREB 52 | 262

In variant management, assigning requirements to specific variants can be prohibited. It is

also feasible to not allow certain combinations of variants.

You can also define that any transitions from one attribute value to another are not

permitted. In particular, the transitions from one status to another should observe the

defined lifecycle of the requirement (see Chapter 5).

Dependencies between attributes and their values can also arise through the hierarchization

of requirements. For example, if requirement A is detailed by requirements A.1 and A.2, for

the attributes of the attribute schema, you must define whether or not the value of A in an

attribute depends on the values of A.1 and A.2.

For an attribute "Status", for example, it makes sense to define that the requirement can

only receive the value "Released" if requirements A.1 and A.2 also have the value "Released"

(and not if A.2, for instance, still has the value "In progress"). It would also not be explicable

for requirement A to have a lower priority than A.1 or A.2.

!

Together with the stakeholders, Peter Reber decides that they do not want

to define any limitations, except for those specified in the requirements

landscape (see Chapter 2), and that not every transition between

requirement statuses is permitted. The requirements information model

specifies that business goals and business processes belong to detail level 1.

Business goals are described in text form, with use case templates used for

business processes. This results in limitations for the permissible

combinations of attributes.

To ensure that the status transitions follow the predefined lifecycle of the

requirements, and that it is not possible to accidentally skip steps (e.g.,

approvals), only the transitions shown in Figure 11 are permitted.

3.4.5 Providing support for recording data

There is always one person responsible for each attribute, and specifically, for recording the

attribute and regularly checking that the attribute is complete and plausible. By default, this

is the requirements manager. This manager can delegate responsibility for individual

attributes to other persons involved in the project.

For the attribute owner, recording the attributes as well as the requirement is an additional

effort. Clicking a value in a dropdown list is quick and easy but collecting the requirement

information from the different stakeholders and clarifying contradictory statements is time-

consuming and tedious. In many cases, therefore, technical support from a tool for

recording and managing attributes is very important.

It is helpful, for example, to define standard ("default") values for attributes which are then

set automatically when new requirements are created. The default value can be the most

frequent value or the least meaningful value, or the value that all new requirements created

have—for example, stability "Volatile". Note, however, that it may not be desirable for

requirements classified as "Medium" not to differ from new requirements created that have

Requirements Management | Handbook | © IREB 53 | 262

not yet been classified. Default values are particularly useful for mandatory fields that must

always be filled when a requirement is created.

You can also group two attributes into a useful "combined" attribute if only a few

combination options are permitted for the respective attribute values. What is also helpful is

common input functions, such as selecting or deselecting an entire values list with one

function to select them for a requirement, for example (provided multiple values are

permitted in the attribute), or vice versa: the selection of a list of requirements and setting an

attribute in all of them.

Other help that can be provided by a tool is the automatic insertion of dependent attribute

values of different attributes (where applicable, with a query). For example, a tool can

automatically assign the status "In progress" to a requirement that already had the status

"Released" but has subsequently been changed (where applicable, with a note). Help can

also be realized, for example, when for hierarchically dependent requirements, values that

are set in the parent node are automatically transferred to the "child nodes".

Some values should be set automatically in any situation as incontestable evidence—for

example, the author (= user name of the author) and date of a change.

!

Default values for the attributes are now added to our attribute schema

where this makes sense:

Attribute Values Default Value

Identifier The bank's schema is: project

code + sequential number, so in

this case, OBA0001, OBA0002,

etc.

Incremented

automatically

Name Free text

Description Free text

Version The format of the versioning is still

to be defined

1

Author Only the following persons are

allowed to write requirements:

Peter Reber, Martin Geldmann

(business analyst), Anja Streng (IT

security expert), Kirsten Uba

(usability expert)

User name of the

author

Source List of all stakeholders

Justification Free text

Stability "Stable", "Volatile" "Volatile"

Requirements Management | Handbook | © IREB 54 | 262

Criticality "Low", "Medium", "High"

Priority for bank "Low", "Medium", "High"

Priority for

customers

"Low", "Medium", "High"

Owner List of all stakeholders Peter Reber

Requirement type "Functional requirement", "Quality

requirement", "Constraint"

"Functional

requirement"

Solution

dependency

"Goal", "Scenario", "Solution-

oriented requirement"

Level of detail Level 1: Business scope

Level 2: User scope

Level 3: IT scope

Status In progress, in evaluation,

released, changed, rejected,

deleted, implemented, tested,

completed

"In progress"

Effort Only whole or half values (in

person days)

Release Takes the form year/quarter, e.g.,

2014/3

Legal liability "Optional", "Recommended",

"Must"

Cross-references "Being tested by", "Refined", "In

conflict with", "Replaces"

General information Free text

3.4.6 Documenting the attribute schema

Attribute schemas are presented in a tabular form or in an information model, depending on

the degree of complexity (for example, with regard to the number of attributes,

dependencies between attributes or their values) (similar to the presentation in Section 2.3).

A requirements management tool then maps the corresponding attribute schema by

providing the corresponding fields.

Requirements Management | Handbook | © IREB 55 | 262

3.5 Change management for attribute schemas

Retrospective changes to an attribute schema during the course of the project should be

avoided if possible [RuSo2009]. The important things to note for a retrospective change to

an attribute schema depend on the type of change.

3.5.1 Adding, changing, or deleting an attribute

When a new attribute is added, the previously documented requirements should be updated

to take account of the new attribute. This can be time-consuming. If you change the name,

designations in different documents, views, and reports may no longer be consistent with

one another. If an attribute is to be deleted, this often causes difficulties if a view, a report, or

an interface to another system queries this attribute. Instead of deleting it, you can add "(no

longer used)" to its name.

3.5.2 Adding, changing, or deleting possible attribute

values (value range)

Adding attribute values for an existing attribute is usually no problem for the underlying tool.

From a technical point of view, you must check whether the requirements for which this

attribute was already set have to be analyzed again and whether, if applicable, the new

attribute value is better.

For example, if a new attribute value "Very high" were to be added for the criticality, all

requirements with the previous criticality "High" must be checked again to establish whether

the criticality is actually "Very high".

When deleting attribute values from a value range, it is important to ensure that

requirements do not become inconsistent due to empty entries in the attribute. Problems are

mainly caused by mandatory fields, since the requirement must have a valid value in the

attribute under consideration. In this case, the solution may be to enter the default value in

the field. For attributes with dependent attribute values, you must make sure that the

removal of an attribute value does not result in impermissible attribute combinations.

When attribute values are changed, it is important to ensure that the changes are made in all

requirements that contain the original value. In the particular case of requirements being

exchanged between different systems, inconsistencies can occur if, for example, the

change of a requirement value is not executed in a database (because it is not desired). In

general, when adding, changing, or deleting requirement values, you have to decide whether

this change will affect requirements that have already been entered or only applies to future

requirements.

3.5.3 Adding or deleting relationships between attributes

If you add a relationship or dependency between attributes, this can lead to some attribute

combinations for the requirements already recorded suddenly no longer being allowed. For

Requirements Management | Handbook | © IREB 56 | 262

example, if you add the limitation that selecting a value for the attribute "Stability" must now

always lead to the attribute "Risk" being populated (and this attribute is therefore always

populated when "Stability" is populated), you must then check which requirements have a

value for "Stability" but none for "Risk" and must therefore be updated.

Deleting a relationship between attributes is generally not critical. More is now permitted

than before. You may be able to check whether, in some cases, the previously prohibited

attribute combination would now make sense.

3.5.4 Changing default values for the attribute type

Changing default values should initially affect only the entry of new requirements. In this

context, however, requirements that have been assigned the previous default value should

be analyzed to check whether they still have the correct value, or whether they need to be

adjusted.

3.5.5 Changing the binding character of attributes

("mandatory fields" and "optional fields")

Changing a mandatory field to an optional field usually does not result in any subsequent

effort. In contrast, if a change from an optional attribute to a mandatory attribute is planned,

you must make sure that the attribute is populated with an appropriate value for all

requirements that have already been documented. It may be necessary to assign custom

values rather than use a default value.

Generally, when making changes to attribute schemas, you have to analyze the extent to

which the views, reports, and interfaces to other tools are affected. For example, if scripts

have been created in the tool that check or process a particular attribute, a change to this

attribute can result in the corresponding scripts no longer being executable.

3.6 Goals and types of views

Projects often cover hundreds or even thousands of requirements. The people involved in

the project no longer have an overview of this volume of requirements. Therefore, we need

concepts to reduce this complexity. The view concept is very important here. A view is a

reduced presentation of the requirements—for example, reduced to just some of the

requirements or just some of the information (including the attributes). The basis for this is

the filtering and sorting of requirements.

Requirements Management | Handbook | © IREB 57 | 262

Definition 3-4:

A view is a goal-oriented abstraction of the requirements that

covers only those requirements and associated information that are

relevant for the respective purpose (e.g., stakeholders, decision

requirement). From a technical perspective, however, a view is a

predefined reusable combination of filter and sorting settings as

well as abstractions and aggregations.

The IREB Foundation Level differentiates between two basic types of views [IREB2015]:

▪ Selective views{ XE "Selective view" }: presentation of a subset of the requirements

that have a specific attribute value—for example, all requirements with the status "In

progress".

▪ Condensed views{ XE "Condensed view" }: presentation of summarized information

for the selected requirements—that is, information that is not present in the original

requirements list but is calculated, such as the number of all requirements with

criticality "High" and status "In progress".

There are also projective views{ XE "Projective view" }: in projective views, those attributes

that are not relevant for the view under consideration are hidden so that only the information

about a requirement that is relevant for a view is displayed.

In a Requirements Engineering tool, you can define and then save a view. Due to regular use

of exactly the same view, over the course of the project, reports are created that are

comparable with one another and that document the course of the project.

The attribute schema is the basis for the definition of a view, as every view is based on the

information defined in an attribute schema. Therefore, when you create an attribute

schema, you must also consider the views that are to be created later.

Stakeholders of a project often need specific information to perform their tasks. Different

roles need different information and therefore different views of the requirements:

▪ The stakeholders, in particular those who define the requirements, want to know

where a requirement comes from (the source, e.g., stakeholder or document) and

what goal the requirement supports. They want this information so that they can

ensure that all requirements are actually necessary (= backward traceability or pre-

requirements specification traceability). The stakeholders are also interested in

forwards traceability (= post-requirements specification traceability)—that is, the

traceability of requirements to subsequent development artifacts such as the system

architecture, implementation, and test [IREB2015]. For example, what test can the

stakeholder use at acceptance to check whether a specific requirement has been

implemented correctly?

▪ Requirements engineers and requirements managers want to make sure of the

quality of the requirements, particularly the consistency of the requirements between

Requirements Management | Handbook | © IREB 58 | 262

documents and detail levels. Traceability is also important for this, as is an overview

of the status of the traceability.

▪ Project managers are interested in the status of the project (or a release), so that

they can forecast the residual effort and residual duration for Requirements

Engineering or the project. They could perform requirements-based project

management—for example, use the status of the requirements to evaluate the

degree of completion of the project. This is common in agile development but is

generally always possible if the quality of the content of the attributes is correct—that

is, the probable implementation effort for each requirement is defined here, the

processing status is clear from the status, and corresponding evaluations are

available in the tool. When requests are made for changes to requirements, the

project manager wants to be able to predict the probable effects, such as the effort,

side effects, and new risks. Traceability is very important for such evaluations. The

project manager also wants to know who the contact person is for a specific

requirement. That is a reason for the attributes "Source", "Owner", and/or "Next

processor".

▪ The main thing that the architect needs is a structured view of the requirements—for

example, the grouping of the requirements according to technical criteria for the

assignment of components. For this purpose, attribute types such as "Interface

requirement" are useful.

▪ Developers want access to the original requirements that belong to the next

component they are implementing. This is supported by traceability between

requirements and components.

▪ Testers and test management want to know which and how many requirements still

need to be tested, and how many they have already confirmed as being free of errors.

This allows them to measure the progress of testing and to estimate the residual

effort for testing. It is also important to know which test cases have to be executed

again in the event of a change.

The above-mentioned views can be created relatively easily by filtering and sorting the

requirements according to their attribute values and through evaluations such as the

creation of totals across attributes. However, the absolutely essential prerequisite for this is

that the corresponding attribute values are present and well maintained, and that the

Requirements Engineering tool allows the required evaluations.

In addition to providing a clear focus and presentation of the information available for the

different roles, views can also regulate access to requirements on a role-specific basis. It is

often the case that you do not want every person involved in the project to have access to

all information, and you therefore need to be able to generate role-based views (see

[Pohl2010]). This type of authorization concept can be realized so specifically in a tool that

specific roles can only see specific views.

3.7 Defining views and the risks of views

The process for defining views includes the following steps:

Requirements Management | Handbook | © IREB 59 | 262

▪ Stakeholder identification: Definition of the stakeholders who need one or more

views.

▪ Reuse: Views from other projects or from a reference project can also be used as a

template for the views to be defined.

▪ Specification of goals: For each stakeholder, you need to know the goal of their

views. This determines which information should be filtered out or summarized, or

which sorting should be set initially. In this context, you must also define the rights of

roles and views, that is, which role should be able to activate which view. It is efficient

if one view can be used by multiple roles.

▪ Specification of required attributes and comparison with the attribute schema: To

be able to fulfill the goals of a view, you must ensure that it is possible to collect the

necessary information and that the corresponding attributes are also available. An

evaluation of the number of requirements that are still in a volatile status can only be

generated if this status is also documented in a corresponding attribute. The

comparison with the attribute schema often leads to the discovery of new views

because when they look at the attribute schema, the stakeholders realize which

evaluations would still be possible. The definition of views and attribute schemas

therefore influence each other.

▪ Implementation of the view: Finally, the predefined views must be implemented and

tested in the underlying tool.

Sometimes, users of a requirements management system are not aware that the complex

information about a requirement can be restricted by views as required. They then often

work with a global and all-encompassing view and perceive the tool unjustifiably as too

extensive and possibly obstructive in their work. At the same time, views also bear risks.

For example, in a view, too much context could be lost: If you create a view in which atomic

requirements are given in a list without any context (e.g., use cases), for example, this

overview will only be meaningful to a limited extent. To avoid such ineffective views as far as

possible, when you define a view you must always take the underlying goals of the

stakeholders into account.

3.8 Implementing a view

Most views are implemented in a requirements management tool by selecting/filtering and

sorting by attribute values (see also [Pohl2010]).

When selecting requirements, you can use a predefined filter to hide requirements—or

attributes of the requirements or both—that you are not interested in for the current

situation. This means that the view presents only an extract of the available data. For

example, by using a filter on a specific release, a tester can select the requirements that are

relevant for the current release being tested. The tester can identify these requirements

from the fact that they have the value that the tester is searching for in the "Release"

attribute. At the same time, the information about the predicted effort for the realization of a

requirement is probably not relevant for a tester, so the corresponding attribute can be

hidden for the specific view for the tester. The tester can also sort by criticality so that they

Requirements Management | Handbook | © IREB 60 | 262

can begin testing with the critical requirements. By sorting, a stakeholder can change the

focus on requirements (for example, all requirements with a high criticality at the beginning

of a list) without hiding requirements.

Condensed views also show information that is not contained in the requirements in this

form. This information arises, for example, from the creation of totals and subtotals or

through the calculation of percentage ratios. This allows you to determine, for example, the

proportion of requirements with the status "Tested"—where applicable, also weighted by

effort. You can then determine how the degree of completion of the requirements continues

to develop over a specific period of time.

Condensed views can be combined with selective views—for example, to determine the

degree of completion of the requirements in relation to a specific release. The

summarization is calculated on a filtered set of requirements.

The following are examples of views you can create through filtering:

▪ All released requirements

▪ All requirements that belong to a specific release

▪ All requirements that have already been tested

▪ All requirements for which a specific person is responsible

▪ All requirements that a developer has to take into account when implementing a

specific component

The following are examples of views you can create through sorting:

▪ A presentation of the requirements in the order of their criticality

▪ Sorting the requirements according to the person responsible shows the distribution

of work across the team members

3.9 Optimizing the assignment of attributes and creation of

views

Practice shows that in some projects, the attributes are not populated to the expected

extent, sometimes even for a good reason. Therefore, it makes sense to check regularly and

at specific points in a project whether, and how, an attribute should still be used [RuSo2009].

In principle, only those attributes that provide a benefit in a view or a report for at least one

stakeholder should be retained. However, the required attributes should be maintained as

well as possible.

One attribute deficit that can be checked easily is where attributes have not been populated.

To find unpopulated attributes, you can either define a view for this purpose or sort by the

corresponding attribute. The requirements with the empty field are then either at the very

top or the very bottom of the list.

If you want a specific attribute to always be populated, the easiest way to ensure this is to

define the attribute as a mandatory field. This forces input when a requirement is created.

However, this is rarely the optimal solution. Note that defining too many mandatory fields

can greatly impede processing and that, when a requirement is initially created, some

Requirements Management | Handbook | © IREB 61 | 262

information may not be available yet, such as the cost estimation. For this reason,

mandatory fields should be declared only sparingly and with a sense of proportion.

For optional attributes whose entry is not mandatory, the following conclusions can be

drawn from evaluations of their previous use:

▪ The attribute was not used in either a view or a report:

This indicates that the attribute in question does not support a specific goal and is

probably not of interest to any of the stakeholders. This raises the question of the

point of this attribute, as every attribute present causes a maintenance effort.

▪ The attribute is always populated with the same value, for example the default

value:

In this case, there does not seem to be any real distinction between the different

requirements in relation to this attribute, which means that the proposed list of values

for selection is not suitable. You can either discontinue the attribute (because nobody

uses it) or adjust the selection list. In the latter case, the notes from Section 3.5 about

changing attribute schemas should be taken into account.

▪ The attribute is never populated:

If the attribute has deliberately not been populated, the information may not be

important. If this assumption is confirmed, the attribute should be removed. However,

the reason for attributes not being populated often lies in the fact that users are not

aware of the definition or the benefit of the attribute, or do not directly see any

benefit since the information is used by another stakeholder. Then the users should

be (re)trained to explain to them the added value of the particular attribute. In this

case, the attribute can continue to be used.

▪ The attribute is only filled for a few requirements:

The question here is whether the goal associated with the attribute can be achieved,

or whether it is still relevant at all. If this is not the case, the attribute can be removed.

However, if it turns out that the attribute is important, it can be declared as a

mandatory field, which forces entry in the future.

In this case, requirements which have already been documented but have no value in

the attribute under consideration must be updated retrospectively (for example,

automatic population with a default value).

▪ The attribute is not populated in individual cases:

It must first be determined whether this attribute is still relevant for the project. If yes,

the Requirements Engineer should complete the relevant requirements. If the

attribute is no longer considered essential, it can either be removed or the gaps can

be tolerated.

▪ The attribute is always populated:

In this case, no further activity is necessary.

In addition to checking that attributes have been populated, you should not forget to ask

stakeholders if they are satisfied. They may be missing some information in their views which

is also missing in the attribute schema. The missing attribute or missing attribute value

should then be added and if necessary, populated retrospectively for the requirements that

have already been recorded. It may also be the case that an attribute or value is obsolete. If

Requirements Management | Handbook | © IREB 62 | 262

a stakeholder no longer needs it in their view, the question should be asked as to whether

other views use the attribute or value, or whether it can be deleted. Care must be taken when

making changes to an attribute schema (see Chapter 3.5).

3.10 Content for the requirements management plan

The requirements management plan documents the attribute schema. The schema

describes the requirements attributes to be used. For each attribute, the name, a

description, the person responsible, permitted values, and dependencies to other attributes

are documented. You create the attribute schema in tabular form, for example, (see Table

2), or in an information model.

In the requirements management plan, you also define the views to be supported. For each

view, the goal and the stakeholders that use the view are documented, as well as the

attributes to be displayed, the filters to be applied, and predefined sorting. You must ensure

that the attribute schema contains all of the required attributes.

3.11 literature for further reading

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.

Springer, 2010.

[RuSo2009] C. Rupp & die SOPHISTen: Requirements-Engineering und –Management.

Hanser, 5th edition, updated and extended, 2009 (available in German only).

Requirements Management | Handbook | © IREB 63 | 262

4 Evaluating and prioritizing requirements

4.1 Motivation and difficulties when prioritizing requirements

Not all requirements are equally important. This becomes obvious at the latest when only

some and not all of the requirements can be implemented within a fixed budget or time

period. You then have to decide whether to increase the budget, deliver later, or reduce the

scope of delivery. And suddenly, some requirements—functions or quality requirements—are

no longer indispensable. In some cases, two requirements cannot both be implemented, or at

least cannot both be implemented to the same quality for technical reasons (= requirements

conflict). To resolve this conflict, you have to decide which of the two requirements is more

important. In a lot of cases, the following applies: "Schedule should drive requirements"

[Davi2005]. This means that when time is short, some requirements often have to give way

to other requirements.

Definition 4-1:

The priority{ XE "Priority" } (or importance) of a requirement

documents the importance of a requirement compared to other

requirements with reference to a defined criterion (IREB Glossary

[Glin2014]).

"Compared to" means that this priority does not necessarily require absolute values—for

example, the importance measured in euro, or implementation effort measured in person

days. As the value is being used to compare the requirements, it can be a relative value, on a

scale of 1 to 10, for example. You just want to know which requirement is more important

than another requirement.

The priority of a requirement is the basis for some decisions in the software or system

development process. In addition to resolving conflicts between requirements and release

planning, such decisions include technical decisions as well as prioritization for testing. The

more important or more critical the requirement that is being tested by a test case is, the

more important the test case also is and therefore also the errors found, and thus the more

thoroughly this requirement should be tested.

Requirements Management | Handbook | © IREB 64 | 262

Definition 4-2:

Prioritization{ XE "Prioritization" } refers to the activity of

determining the priorities of requirements.

The prioritization prepares the negotiation and selection of requirements as well as the

release planning.

Prioritization is made more difficult by the fact that the importance of a requirement

ultimately depends on many factors, in particular:

▪ The criteria you create

▪ The perspective you take (i.e., the importance of a requirement differs for different

stakeholders)

▪ The decision to be supported by a requirement (i.e., does a low prioritization mean

that this requirement will never be delivered, or will it simply be delivered four weeks

later than the other requirements?)

▪ The point in time at which the importance is evaluated

For example, is it just financial criteria such as costs and benefits that are important, or does

customer satisfaction also play a part, or is the aim to minimize risks? In a system in which

security is critical, for example, reducing risks will be seen as more important than user-

friendliness; in other systems, the reverse is true.

4.2 Principles of evaluation

The evaluation of the requirements is the basis for prioritizing the requirements. The priority

(that is, the importance) of a requirement is often determined from multiple evaluation

criteria, for example, by comparing the costs and benefits of this requirement.

The following are examples of evaluation criteria:

▪ Implementation effort or other costs

▪ Importance or benefit for the user or other stakeholders

▪ Probable frequency of use of a function

▪ The legally-binding nature of a requirement

▪ Dependencies between requirements (underlying requirements must be implemented

before requirements that are dependent on them)

▪ Criticality (also referred to as risk)

▪ Stability or the degree of innovation (see the Kano prioritization in Section 4.5.8)

The priorities of the requirements naturally correlate with the priorities of the associated

system functions, test cases, and errors discovered during the test. In other words: if an

important requirement or functionality has errors, these errors are more severe than similar

errors in functionality with low importance that is used only rarely.

Requirements Management | Handbook | © IREB 65 | 262

Stakeholders with the appropriate qualifications are responsible for evaluating requirements.

For example, the end users or product management are the best persons to evaluate the

benefits of a requirement. The best contact persons for costs are the technical personnel.

However, even the question of which evaluation and prioritization criteria are to be used

must be agreed with stakeholders. It is primarily the users of the prioritization results that do

this (e.g., the project manager), that is, the persons who have to take decisions based on the

priorities. The prioritization criteria must be defined precisely, including the scale to be used

and the evaluation method. For example, should the costs be determined by means of an

evaluation by experts, or by means of a counting method such as the function point

method?

Are function points sufficient as a relative dimension or does the effort have to be converted

into person days? And who is permitted to or should perform this evaluation? When (at the

earliest or latest) should the evaluation be conducted?

Sources for evaluation criteria include:

▪ Project management

▪ Guidelines and standards

▪ The requirements attribute schema

▪ The disciplines that follow development, such as quality assurance

Requirements management is responsible for ensuring that the priorities are determined and

suitably documented. The attributes are ideal for this documentation. The prioritization

criteria must therefore be part of the attribute schema (see Chapter 3).

!

The attribute schema in our case study already contains some attributes that

are suitable for prioritizing requirements:

▪ Stability: Volatile requirements should not be implemented yet;

instead, they should be shifted to a later point in the release plan until

they have become stable.

▪ Criticality: Particularly critical (i.e., risky) requirements are treated

differently to non-critical requirements. For example, the IT security

experts should perform a systematic risk analysis for the risky

requirements. The critical requirements should also be tested

particularly thoroughly.

▪ Priority for the bank: If the goal is to quickly create as much return on

investment as possible for the bank, the requirements evaluated as

"High" here should be the first to go live.

▪ Priority for customers: If the goal is to quickly provide as many user

benefits as possible, the requirements evaluated as "High" here

should be the first to go live.

▪ Effort: The effort can influence the prioritization in two different ways.

The fixed, predefined budget for a release specifies a cost limit.

Therefore, in the release planning, the budget determines how many

of the most important requirements may be selected (i.e., the budget

Requirements Management | Handbook | © IREB 66 | 262

must not be exceeded). Furthermore, the benefits and effort for a

requirement can be used to calculate the cost/benefit ratio of this

requirement so that this can be used as a prioritization criterion. When

evaluating the importance, it is then not the absolute benefit that is

the deciding factor, but whether the efforts incurred are worth it: do

the benefits exceed the costs, or the costs exceed the benefits?

▪ Release: The release number of a requirement is already the result of

a prioritization, probably due to other prioritization criteria.

▪ Legal liability: All "must" requirements must be included in release 1.

4.3 Prioritizing requirements

As we saw in the previous section, there is a lot to consider when prioritizing requirements.

The ideal solution is to proceed systematically, in the following order:

▪ Define the goals of the prioritization: Who will need priorities to make decisions and

when will they need them? Which decisions have to be made? Why and for what

purpose is this decision important? Which (higher level) goals should this decision

support?

▪ Define the prioritization criteria: Which criteria should be used for the prioritization to

achieve these goals? If, for example, the goal is to maximize the cost/benefit ratio of

the entire project, it makes sense to also determine the cost/benefit ratio for each

requirement and use this criterion in the release planning. The scale and the value

range must also be defined for each criterion. Should absolute or relative values be

determined? This depends on the type of decision to be made and the level of detail

required for the evaluation. If, for example, you want to determine the most important

third of requirements from a list, an evaluation on a scale with 1, 2, or 3 points is

sufficient. However, if you want to create a list sorted by importance, an ordinal scale

is the best solution. An ordinal scale assigns values to the requirements, from "Most

important requirement" through "Second-most important requirement", right down

to the least important requirement. This is represented via a sequential whole number

which can start at 1 for the most important requirement but can also assign 1 to the

least important requirement.

▪ Define the prioritizing stakeholders: The requirements are initially evaluated based

on the evaluation criteria. In each case, different stakeholders may have the

necessary expertise to reliably evaluate the different respective evaluation criteria.

Based on these evaluations, a person or group of persons then prioritizes the

requirements. All of these stakeholders must be selected according to their

competence.

▪ Define the requirements artifacts to be prioritized: If the requirements are described

at different levels of detail, you will probably want to prioritize at just one of these

levels. You therefore select the level at which the decision has to be made. If, for

example, you want to select the business processes to be implemented in the first

release, you prioritize only the business processes, and not the refining usage

scenarios. It also does not make sense to compare apples with pears—for example, to

Requirements Management | Handbook | © IREB 67 | 262

compare features with mock-ups. When selecting requirements to be prioritized, note

that the requirements should be at a similar level of detail to avoid distorting the

result of the prioritization [WiBe2013]. Less refined, more abstract requirements tend

to have higher priorities than more detailed requirements, as a less refined

requirement covers multiple detailed requirements. The primary aim here is to limit

the number of requirements to be prioritized because otherwise the effort involved in

prioritization can be very high. (We will come back to this point later on.)

▪ Select the prioritization technique: This point refers to both measurement

procedures and evaluation methods for determining criteria, as well as a sorting

method for the requirements. Various prioritization techniques are described in

Sections 4.4 and 4.6. These are mainly sorting and measurement procedures. You

also have to define who performs this prioritization and when they do so. It will

probably be the case that different experts will evaluate different criteria based on

the required competence.

▪ Where necessary, adapt the attribute schema: The priorities of the requirements are

generally documented in attributes. The prerequisite for this, of course, is that the

attribute schema contains the corresponding attributes with the correct value lists. If

this is not the case, you have to adapt the attribute schema. We discuss the points to

note for this critical activity, particularly if the attribute schema is already in use, in

Chapter 3.

▪ Prioritization: The prioritization is now performed as planned. All evaluations and

priorities are documented, including the justifications and any assumptions made.

▪ Check the requirements regularly and reprioritize where necessary: Things change

over time—some things become more important, some less important. Sometimes

our knowledge of the facts also improves. Priorities thus also change over time and

requirements must therefore be checked regularly. The best time to do this is always

just before an important decision has to be made based on the priorities.

!

Stakeholders of the prioritization, goals, and criteria:

In our case study, the changes to the online banking system are to be

delivered in individual releases. The project manager performs the release

planning, supported by our requirements manager, Peter Reber. The

following rules are defined for the release planning:

▪ Stability: volatile requirements are never included in the next release.

▪ Legal liability: all "must" requirements must be included in release 1.

▪ Of the remaining requirements, the most important requirement for

the bank (attribute "Priority for the bank") and then the most

important requirement for the customers (attribute "Priority for the

customers") is selected alternately until the release budget has been

consumed.

Requirements Management | Handbook | © IREB 68 | 262

Only business processes are to be prioritized, as every release should contain

only complete business processes. Half-implemented business processes

are generally of no use to anybody.

To allow quick decisions in cases of crisis or conflict, the project manager

wants to always be able to see a sorted list of requirements, sorted either by

their importance for the bank or their importance for customers. In addition

to the business processes, the project manager would also like to see the

user and system use cases prioritized, as well as all solution-based

requirements. However, it soon became clear that this detailed prioritization

would involve an enormous amount of effort.

Prioritization workshops lasting hours or even days would be necessary.

Therefore, there is initially no prioritization of the solution-based

requirements (and therefore no workshop).

The IT security experts use the attribute "Criticality" to note requirements for

the next steps: requirements evaluated as "High" are to be subjected to a

thorough risk analysis by the group, including an error tree analysis; the

"Medium" criticality level requirements are to be subjected to a normal risk

analysis by one person; and the requirements evaluated as "Low" criticality

will not be considered further.

The goal of this procedure is to draw attention to the particularly relevant

areas.

The usability expert will deal intensively with the requirements that are

particularly important for the customers.

The attribute schema therefore contains all of the attributes required for

decision making (see Chapter 3). The potential introduction of a further

attribute that highlights all requirements that are particularly important for

accessibility was briefly considered. However, an initial analysis established

that this would apply for almost all requirements. The attribute would

therefore not be useful for the intended purpose as a differentiation and

prioritization criterion. Therefore, this plan was abandoned.

We will select the appropriate prioritization techniques later in the chapter,

once you have learned about the different techniques.

4.4 Two types of prioritization techniques

There are a lot of prioritization techniques. They differ in the level of effort required, the level

of subjectivity and the rate of errors, and in their suitability for different purposes. We cannot

provide a complete overview of all the techniques that exist here. Therefore, we present the

techniques that are the most important, most widespread, and most suitable for practice.

We assume a situation in which the goals and criteria for the prioritization have already been

defined, as well as the persons who can evaluate (or often, even predict) which requirement

Requirements Management | Handbook | © IREB 69 | 262

will fulfill which criteria and how well. The artifacts to be prioritized have also been defined. If

you have a complex requirements landscape and, for example, specify the requirements at

different levels of detail, you should compare only those requirements that are at the same

level of abstraction. Anything else would be a case of comparing apples with pears. To get

reliable results, depending on the decision to be made, you should prioritize at only one level

of detail: the level at which this decision is to be made. For example, if the goal is to select

the most important business processes for the first release to be delivered, then prioritize

the business processes. Alternatively, if you want to define the order of implementation of

the use cases, then prioritize the use cases. The starting point for the prioritization is

therefore an unsorted list of requirements at the same level of abstraction.

The prioritization technique converts this list into a sorted list in which a priority value is

assigned to every requirement. Further activities are then possible based on this list, such as

the release planning.

We differentiate between two types of prioritization techniques{ XE "Prioritization technique"

}:

▪ With an ad-hoc prioritization technique{ XE "Ad-hoc prioritization technique" }, an

expert assigns a value to every requirement (based on experience). This can be done

quickly but is more prone to error.

▪ The analytical prioritization technique{ XE "Analytical prioritization technique" } is a

more systematic process, comparing, for example, pairs of requirements with one

another; or different experts evaluate different criteria, which then results in the

priority. This technique involves more effort, but the result is more reliable and has

been created more carefully.

4.5 Ad-hoc prioritization techniques

The following ad-hoc prioritization techniques have proven to work well in practice:

▪ Requirements triage

▪ Ranking

▪ Top-Ten Technique

▪ Single-criteria classification

▪ Planning Poker

▪ Two-criteria classification

▪ 100-dollar technique

▪ Kano classification

4.5.1 Requirements triage

Requirements triage{ XE "Requirements triage" } [Davi2003] is a single-criteria classification

based on medical science. It can also be used to presort requirements and to simplify the

prioritization. Each requirement is assigned to one of three categories:

▪ Requirements which "must" be implemented (e.g., in the next release)

Requirements Management | Handbook | © IREB 70 | 262

▪ Requirements that are not necessary (yet)

▪ Optional requirements, for which the priority is not yet clear; these requirements need

to be prioritized more precisely, or their implementation depends on the available

resources

The optional requirements can be evaluated with a different prioritization technique. For the

other two requirements groups, the decision has already been taken. If there are too many

"must" requirements, or you want to put them in order, a more detailed prioritization makes

sense here.

Triage can also be used for other decisions as well as deciding which requirements to

implement.

4.5.2 Ranking

In the ranking{ XE "Ranking" } technique, the stakeholders sort the requirements into an

order based on the prioritization criterion (e.g., benefits, costs, urgency). Any prioritization

criterion is possible here. As a result, the requirements are assigned to the ordinal scale we

have already mentioned (see Section 4.3), in which, for example, the most important

requirement receives number 1, the second most important number 2, and so on. If the

number of requirements is low, they can be sorted ad-hoc at a glance. This can be done, for

example, by writing the requirements on index cards and then sorting them on a table, in a

group if desired.

If there are more requirements than you can compare at a glance (e.g., more than 10), either

presorting (triage) or a systematic sorting procedure helps. After presorting by means of

requirements triage, you then use the prioritization technique within only one category of

requirements—for example, for the optional requirements.

The following is recommended as a systematic sorting procedure: you place a requirement

on the table (or display it electronically). You then take the next requirement and decide

whether it is more or less important than the first requirement. You then place this

requirement either further up or further down in a list accordingly. As far as possible, no two

requirements should have the same rank, although an equal evaluation would be possible in

an exceptional case. You then proceed in the same way with every additional requirement. It

is usually quickly clear whether the new requirement is relatively important or unimportant

and should therefore be compared with the requirements at the top or bottom of the list. In

the end, you have a complete list of the requirements sorted by priority.

4.5.3 Top-Ten Technique

You often do not need a completely sorted or prioritized list of requirements. It is often the

case that you are simply looking for that group of requirements that currently has the

highest priority and should be processed in the next step—for example, implementation or

testing. The approximate number of requirements you are looking for is also often clear. If,

for example, a requirement causes an average implementation effort of four days, and in the

next iteration, resources are available for 40 person days, the objective of the prioritization is

Requirements Management | Handbook | © IREB 71 | 262

to determine the ten most important requirements: the top ten{ XE "Top-ten technique" }.

The remaining requirements do not need to be prioritized other than determining that they

do not (yet) belong to the top ten. Of course, the method also works for the most important

three or twenty-four requirements, for example.

The procedure is as follows: in the first round, you collect all candidates for the top ten. You

will probably not get exactly ten candidates. If there are too many candidates, select those

that do not initially belong to the top ten. If there are not enough candidates, look at the

rejected requirements again. Removing requirements from the list of candidates is usually

easier than looking at all requirements again.

Therefore, in the first round, if there is any doubt about a requirement, you should include it

as a candidate rather than reject it. To remove requirements from the top ten list, you can

use one of the other prioritization techniques (e.g., ranking or the techniques described

below) and then cut the sorted list of requirements off after number 10.

If multiple stakeholders or stakeholder groups (e.g., five) are involved in the prioritization, you

could, for example, arrange the process such that the five groups are each allowed to select

their top two requirements, resulting in the top ten list.

4.5.4 Single-criteria classification

With single-criteria classification{ XE "Single-criteria classification" }, you evaluate each

requirement in order according to the prioritization criterion.

You can use any useful scale—for example, absolute values such as the implementation

effort in person days, or relative values on a points scale that you define yourself (e.g., 0 to 10

points), or categories such as low/medium/high or mandatory/optional/nice to have. You can

do this relatively quickly. However, you must define clearly beforehand what each number of

points means. For example, you can define that criticality 10 can only be assigned if there is a

risk to human life or the existence of the entire company, or that each requirement for which

the work is possible by means of a workaround if the requirement is not implemented is an

optional requirement. The greater the number of people involved in the prioritization—

regardless of whether that is in a group or if an average value is to be calculated from the

individual evaluations of the evaluators—the more important such definitions are. If this is

not done as described, where prioritization is performed in groups, time will be wasted in a lot

of cases—for example, due to the discussion of the meaning of the points value 10, rather

than a discussion about the priorities themselves.

If you compare and aggregate independent evaluations by different experts, in principle you

receive more reliable values than in a group discussion, as groups cannot always decide

optimally because of the effects of group dynamics. However, you also see then that

different evaluators have different levels of optimism. One evaluator assigns the value 1

more often, for example, and generally lower values, whereas another assigns the value 10

more often and this evaluator's values are higher on average overall. However, this

difference is often due less to differences in character, and more to a different

understanding of when the extreme values 1 and 10 are to be assigned.

Requirements Management | Handbook | © IREB 72 | 262

4.5.5 Planning Poker

In planning poker{ XE "Planning poker" }, the requirements are also evaluated with reference

to a criterion, usually with reference to costs or the benefits of the requirements with regard

to the scheduling of the requirements in specific releases. This technique is widespread in

agile development but also works in other areas as well.

It takes into account the pitfalls of decision processes in groups and therefore potentially

leads to better evaluations than a group discussion. We have already mentioned the effects

of group dynamics. When experts evaluate separately, they can, however, develop a

different understanding or overlook a relevant factor.

Therefore, planning poker uses a pragmatic compromise between individual evaluation and

group discussion as its decision process. Furthermore, the evaluation is based not on an

even scale of points from 1 to 10, but on Fibonacci numbers which have been proven to work

for this purpose. Each of the evaluators sitting at the table together receives a set of playing

cards with the following points values: 0, 1, 2, 3, 5, 8, 13, 21, 34. There are also cards that the

evaluators can use to register a need for discussion or a break.

To prioritize the requirements together in the group, the process is then as follows:

1. Presentation of the requirement to be prioritized (2 minutes)

2. Each evaluator makes their own evaluation (½ minute): each evaluator selects one of

their cards and places it face down on the table to signify that they have made their

decision. The other evaluators thus see only the back of the card.

3. The cards are revealed simultaneously: as soon as everyone has selected a card, all

evaluators turn over their cards.

4. Explanation of the highest and lowest evaluations (1 minute): the two people who have

given the lowest and the highest evaluation each explain their value. Their evaluations

are usually based on different assumptions than those made by others, either

justifiably or unjustifiably. These assumptions are now discussed.

5. Everyone makes their own evaluation (½ minute): based on the new knowledge

provided by colleagues, the evaluations are repeated: everyone selects a card and

places it face down in front of them.

6. The cards are revealed simultaneously

7. Agreement on an evaluation (1 minute): in the second round of evaluations, the values

are closer but not necessarily identical. The group can now decide to take either the

most frequently occurring value or the average of the evaluations.

This technique can be used for all prioritization criteria imaginable—costs, benefits, or other

criteria.

4.5.6 Two-criteria classification

In some cases, multiple prioritization criteria are to be considered simultaneously. There are

various options for combining two criteria{ XE "Two-criteria classification" }:

Requirements Management | Handbook | © IREB 73 | 262

▪ With a formula: If, for example, you are interested in the cost/benefit ratio, for each

requirement, you determine firstly the costs and then secondly the benefits. This

process probably involves questioning various stakeholders—for example, technical

experts for the costs and the users for the evaluation of the benefits. The

cost/benefit ratio is then calculated for each requirement from the quotient between

the two values. The requirement with the highest benefits per cost unit invested then

has the highest priority. In this process, the costs and benefits do not necessarily have

to be determined in the same unit (e.g., euro). A ratio in the unit "points/person day" is

also useful.

For the purposes of documentation and use in views, it makes sense to define not

only the cost and benefit evaluations in a separate attribute in the Requirements

Engineering tool, but also their quotient.

▪ With a matrix: You can determine the criticality of a requirement as its calculated risk,

for example, which is defined as the probability of occurrence of a risk event

multiplied by the damage incurred if the event occurs. With online banking, these risks

can be very high. However, this number does not ultimately contain all the relevant

information. Extremely rare catastrophes with an almost inestimably high level of

damage amount perhaps to €10 per month, in the same way that small accidents

that occur regularly and cause damage of €0.01 each time also amount to €10 per

month. In many cases, these categories will be handled separately and differently.

Instead of multiplying the probability by the damage, the preference is to create a risk

matrix to present the risks in a two-dimensional diagram for the purpose of

classification.

Figure 4 shows an example of a matrix in which requirements are prioritized according to

their cost/benefit ratio. At the very top left (Priority 1) we can see the quick wins—that is,

requirements that bring a high benefit at low costs. These thus receive priority 1, the highest

priority. In the fields with priorities 2 and 3, the benefits are also still higher than the costs.

The requirements on the diagonal, where the costs and benefits more or less balance out,

are classified in the same category (Priority 4), and so on.

How you assign the requirements in priority categories based on the two criteria is your

decision and naturally influences the next steps, for example, the release planning.

Requirements Management | Handbook | © IREB 74 | 262

Figure 4: Prioritization matrix for requirements according to costs and benefits. B/C designates

the ratio (i.e., the quotients) of benefits and costs.

Figure 5 shows an example of a prioritization matrix according to risk (= risk matrix). Here,

the risks linked to a requirement are prioritized and thus also the criticality of the

requirement which is threatened by the risk. For example, the requirement (and the

functionality) for transfers in online banking bears the risk that hackers will be able to get

hold of the account holder's access data and execute an unauthorized transfer. This risk is

possible and serious and is therefore in a red box in the matrix. This means that

countermeasures must be taken at all costs.

For the risks in the yellow area, you weigh up which measures make sense economically. The

risks in the green area may be accepted, unless they can be prevented with simple

countermeasures. The three areas of the matrix therefore determine how the respective

risks are to be handled.

Requirements Management | Handbook | © IREB 75 | 262

Figure 5: Risk matrix for the prioritization of requirements with reference to risk and

criticality

4.5.7 The 100-Dollar Technique

The 100-dollar technique{ XE "100-dollar technique" } [LeWi2000] is particularly suitable for

prioritization with multiple persons who do not necessarily have to meet up for a group

discussion.

With this technique, stakeholders are granted 100 imaginary units (money, time, etc.) which

they can assign to the requirements. Any requirement that is worth, for example, double the

amount of money to a stakeholder than another requirement should also be assigned double

the number of units/points. Each stakeholder can assign a maximum of 100 units. At the end,

the points that the different stakeholders have assigned to the same requirements are

added up. The requirement with the most points has the highest priority.

This technique is difficult to implement for larger numbers of requirements. In that situation,

the stakeholders find it difficult to weigh up all of the requirements against one another, and

it is also more difficult to ensure that a maximum of 100 points is assigned. Therefore, we

recommend this technique for prioritizing rough requirements (e.g., features) with a high

level of abstraction, or for mutual prioritization of entire requirement groups. Within the

requirement group, the 100-dollar technique can then be used to compare the requirements

with one another.

Two situations must be avoided with this technique: if the stakeholders want to make their

lives easier, they assign the same number of points to every requirement. For example, in the

case of 100 requirements, every requirement receives exactly one point. At the end of the

process, all requirements will be equally important and there will be no benefit from the

prioritization. Therefore, advise the stakeholders that they should ideally assign their points

Requirements Management | Handbook | © IREB 76 | 262

unevenly to allow clear statements to be obtained. If a stakeholder does in fact assign

identical numbers of points to every requirement, you can also reject these evaluations and

ask for a new evaluation.

The stakeholders must also submit their evaluations independently of one another to avoid

influencing one another. Independent voting can be achieved via a questionnaire or

individual interviews. In a vote within a group session, one stakeholder could "repair" an

evaluation made by a colleague that they deem to be incorrect by counteracting this

evaluation. However, even knowing the preferences of the other evaluators (without

knowing how many points they have assigned) influences the voting procedure. If a

stakeholder knows that other stakeholders will give his favorite requirement a low value, but

give other important requirements a lot of points, this first stakeholder will award his favorite

requirement more points, trusting that the other requirements will receive their points from

someone else. Again, at the end, all requirements will appear to be equally important.

The 100-dollar technique can also be applied in a variant with 1,000 or 10,000 units. A greater

number of points naturally allows more differentiated evaluations. However, the prioritization

also causes more effort, and it is more difficult to check how many points a stakeholder has

awarded in total. From a practical perspective, this requires a tool.

4.5.8 Kano classification

In the Kano model{ XE "Kano model" } [Kano1984], requirements are classified and prioritized

in three categories with respect to user expectations. The Kano model is already described in

detail in the handbook for the Foundation Level [PoRu2015] and is therefore repeated only

briefly here. In this technique, the requirements are assigned to one of three categories:

▪ Basic factors{ XE "Basic factor" } are requirements where the users take fulfillment of

the requirement for granted. Therefore, fulfillment of the requirement does not make

them explicitly satisfied, but if the requirement is not fulfilled, they are very

unsatisfied.

▪ Performance factors{ XE "Performance factor" } are requirements explicitly required

by the users. Fulfillment of these requirements makes the users satisfied; non-

fulfillment makes them dissatisfied.

▪ Excitement factors{ XE "Excitement factor" } are requirements that the user does not

expect. If the requirements are not fulfilled, the user does not notice. However, if the

requirements are fulfilled, the user is excited about this innovation.

To determine which Kano category a requirement belongs to, ask the users two questions:

How satisfied would you be if the requirement were fulfilled (satisfaction)? How dissatisfied

would you be if the requirement were not fulfilled (dissatisfaction)?

Figure 6 shows a matrix for a two-criteria prioritization according to Kano. You can see that

in addition to the three requirements categories referred to above, there is a further

category, which appears only rarely: the insignificant requirement.

Requirements Management | Handbook | © IREB 77 | 262

Figure 6: Matrix for a two-criteria prioritization according to Kano

4.6 Analytical prioritization techniques

The ad-hoc prioritization techniques have the advantage that they are easy to use and very

efficient. However, their results are subjective and often impossible to trace at a later point

in time. They are not optimal for critical decisions or in a security-critical environment. In

these situations, analytical prioritization techniques allow a more neutral and more traceable

prioritization. We present two techniques here:

▪ Prioritization matrix according to Wiegers

▪ The Analytical Hierarchy Process (AHP)

4.6.1 Prioritization matrix according to Wiegers

The prioritization matrix according to Wiegers{ XE "Prioritization matrix according to

Wiegers" } is a prioritization technique that uses more than two criteria to prioritize

requirements. It compares the relative advantage (of the fulfillment) and relative

disadvantage (of the non-fulfillment) of every requirement with the relative costs and the

relative risk of this requirement [WiBe2013]. Figure 7 shows an example or rather an extract

from such a matrix for our online banking system.

Requirements Management | Handbook | © IREB 78 | 262

Figure 7: Prioritization matrix according to Wiegers for an example

The procedure for calculating the priority is as follows:

1. Create or obtain a template

2. Define and enter the weighting of the prioritization criteria: in our example of the

online banking system, the risks outweigh the costs, for example.

3. Add the list of requirements to be prioritized. As noted previously, these requirements

should be at the same level of detail. We use example usage scenarios here.

4. Evaluate each requirement with reference to the prioritization criterion "Benefit" that

fulfillment of the requirement brings, using the matrix according to Wiegers on a scale

from 1 to 9

5. Evaluate each requirement with reference to the prioritization criterion

"Disadvantage"—that is, the disadvantage of non-fulfillment of the requirement,

again on a scale from 1 to 9

6. Calculate the total value of both evaluations as a weighted total, weighted according

to the weighting factors. This total can be calculated automatically in a template.

7. Calculate the percentage value of every requirement with reference to the total list of

requirements: total value/total of all total values. This can also be calculated

automatically.

8. Evaluate each requirement with reference to the prioritization criterion "Costs", again

on a scale from 1 to 9

9. Calculate the percentage portion of the costs based on the total costs: costs / total of

all costs

10. Evaluate each requirement with reference to the prioritization criterion "Risk", again

on a scale from 1 to 9

11. Calculate the percentage portion of the risk based on the total risk: risk / total of all

risks

12. Calculate the priority of each requirement according to the following formula:

Priority = value %/(costs% x weighted costs + risk% x weighted risk). This is a

prioritization according to the cost/benefit ratio, whereby the risk is added to the

costs. (Other prioritization techniques deduct the risk from the benefit.)

13. Determine the rank of each requirement: the higher the priority of a requirement, the

higher its rank.

Requirements Management | Handbook | © IREB 79 | 262

!

Prioritization of the requirements with the prioritization matrix according

to Wiegers

In our case study, the requirements manager Peter Reber has decided to use

the Wiegers method because in the bank environment, decisions must be

taken carefully and based on solid reasoning. In addition to the matrix

according to Wiegers, the justifications for the respective evaluations are

also to be documented—that is, why each number of points was assigned in

the respective field.

The values are evaluated by the following stakeholders: with reference to the

benefits and disadvantage, the usability expert performs requirements

triage and sorts out the requirements that are very important and those that

are very unimportant and assigns points to them. The Customer Advisory

Board determines the benefits and disadvantage of the remaining

requirements. With regard to the costs, the developers are questioned. They

determine the costs together by means of planning poker. The IT security

experts investigate the risk. To do so, they first use a risk analysis to

determine which risk events can even occur with reference to a requirement.

Then, based on their experience, they use AHP to determine the probability

of occurrence, and an analysis of company-specific statistics and key

figures to determine the damage.

Figure 7 shows the results of the evaluations or rather an extract from the

results. We can see that the relatively unimportant but less expensive and

less risky callback function has made it into second place, ahead of the

transfer.

Practical tip: Of course, the result of the prioritization depends on the prioritization criteria

selected and the technique used! If you had classified the above-mentioned requirements with

the Kano method, as a basic function of online banking, the transfer would naturally have been

more important than the callback function. Therefore, make sure you select the prioritization

criteria wisely!

Requirements Management | Handbook | © IREB 80 | 262

4.6.2 The analytical hierarchy process (AHP)

The analytical hierarchy process{ XE "Analytical hierarchy process" } (AHP) is a

mathematically sophisticated, theoretically very interesting model. To benefit from the

advantages of AHP, it is advisable to use a tool that supports the method and performs the

required calculations.

The basic idea of the method, however, is simple. The prioritization is simplified for the

evaluator, who has to compare only two requirements as a pair: which of the two is more

important (or more expensive or riskier) than the other and by how much? Any prioritization

criterion is possible here. This decision between two requirements is easier to make than

deciding which requirement from an entire list of requirements is the most important.

However, the disadvantage of the method is that each requirement has to be compared in a

pair with every other requirement. For n requirements, this results in n (n-1) /2 comparisons.

This creates a lot of effort. An example calculation for the effort is given in the practical tip

below. The great strength that no other method can demonstrate is that this method can

balance out errors made by the evaluators. If, in the case of three requirements A, B, and C,

A has been deemed to be more important than B, and B more important than C, then A must

also be more important than C. However, if C is deemed to be more important than A, there

is obviously an error. The method can measure how good and reliable the evaluations are

overall using a "consistency ratio". The mathematics of the method were described by the

inventor Saaty [Saat1990]. A summary of the method is given by Karlsson and Ryan

[KaRy1997].

Here, we are particularly interested in the procedure from the evaluator's view. The

evaluator receives two requirements for selection and has to decide which of the two is

more important. The scale from Figure 8 is used for this. Apart from the fact that the

evaluator has to do this for a large number of pairs of requirements, there is no further

difficulty for the evaluator in this method. A tool or an expert performs the evaluation and

then determines the priorities for the requirements.

Figure 8: AHP scale for the comparison of two requirements

Open source tools are available to support AHP, for example PriEsT [SMK2013], [PriEsT].

Requirements Management | Handbook | © IREB 81 | 262

Practical tip: For each requirement, the matrix according to Wiegers requires an evaluation of

four different values. You have to assume that each evaluation takes 1–2 minutes. Therefore, if

you have 100 requirements in your list, the effort involved is 400–800 minutes, 6.7 to 13.3 hours,

without any breaks.

In planning poker, with a disciplined process, prioritizing one requirement takes five minutes.

100 requirements therefore take 500 minutes, 8.3 hours.

AHP has the worst average: for 100 requirements, you have to perform 100 x 99 / 2 = 4950

comparisons. If every comparison takes between half and one whole minute, this results in

an effort of 41 to 82 hours, 5–10 working days per evaluator.

You should therefore consider carefully in advance which requirements you want to prioritize

and how many people are really needed for this. The ad-hoc techniques usually evaluate

only one or two criteria for each requirement, and therefore they require correspondingly

less effort provided time is not lost through long discussions. If we assume 1–2 minutes per

requirement, the result for 100 requirements is 1.6 to 3.3 hours.

The use of the matrix according to Wiegers and the AHP method is recommended only for

requirements lists with a maximum of 30 requirements [WiBe2013], [Mois2002].

4.7 Combining prioritization techniques

Different prioritization techniques have different advantages and disadvantages. The ad-

hoc techniques are easy to use but lead to less traceable and not completely objective

results. The analytical techniques are better, but do not scale well. In the prioritization matrix

according to Wiegers, four evaluations have to be performed for each requirement, and with

AHP, the prioritization of double the number of requirements does not produce double the

amount of effort, as is the case for most techniques, but rather four times the effort. Where

requirements lists are long, therefore, an effort of many hours or even days arises.

As many projects work with hundreds or even thousands of requirements, pragmatic

solutions are required. In most cases, it is not necessary to prioritize the entire requirements

list in detail. You can save a lot of time but still achieve an almost identical prioritization

quality by combining an ad-hoc technique with an analytical technique.

For example, in the first round of the prioritization, you can use an ad-hoc prioritization

technique to reduce the number of requirements to be considered. If, for instance, you want

to determine the most important requirements for the next release, you do not need a

particularly sophisticated prioritization for the requirements that are currently less important

as these will initially be deferred in any case. Even for the apparently urgent requirements, no

further differentiation is necessary. However, a closer examination is worthwhile for

requirements that initially appear to be approximately equally important, but one is to be

included in the release and others have to be postponed. In this requirements group, you can

now use an analytical technique to draw the dividing line between the requirements that will

be included in the release and those that will not.

Requirements Management | Handbook | © IREB 82 | 262

In our case study in Section 4.6.1, we have already presented possible combinations of

different prioritization techniques. Which technique you use and how you use it depends on

which criteria are to be used for the prioritization, what the goal of the prioritization is

(determine the top ten? Weigh up two groups of requirements?), how much time is available,

whether one or more persons are to be questioned (some methods are less suitable for

decision making within a group), and the level of knowledge of the stakeholders.

4.8 Content for the requirements management plan

When creating the requirements management plan, you have to define the criteria to be

used to prioritize the requirements (based on which decision), when they are to be prioritized,

by whom, and using which technique. Make sure that the attribute schema contains the

attributes that correspond to these prioritization criteria. This is the only way to document

the priorities in the attributes in the requirements management tool and to evaluate the

priorities—for example, to filter out the most important requirements for the release or

iteration planning.

4.9 Literature for further reading

[Cohe2005] Mike Cohen: Agile Estimating and Planning, Prentice Hall International, 2005.

[Davi2005] Alan M. Davis: Just Enough Requirements Management - Where Software

Development Meets Marketing. Dorset House Publishing, 2005.

[Ma2009] Qiao Ma: The effectiveness of requirements prioritization techniques for a

medium to large number of requirements: a systematic literature review.

Master Thesis, AUT University, 2009,

https://openrepository.aut.ac.nz/server/api/core/bitstreams/2f0f93a5-05b2-

4688-9e07-6be9534cb3ca/content.

https://openrepository.aut.ac.nz/server/api/core/bitstreams/2f0f93a5-05b2-4688-9e07-6be9534cb3ca/content
https://openrepository.aut.ac.nz/server/api/core/bitstreams/2f0f93a5-05b2-4688-9e07-6be9534cb3ca/content

Requirements Management | Handbook | © IREB 83 | 262

5 Version and change management

Life as a whole is marked by changes and new requirements that are motivated partly by

external factors and partly by internal factors. In the same way, we encounter change

requests in all projects, from town planning to software development.

Changes are not necessarily bad in themselves and they take place regardless of how well

the originally accepted contractual basis or the accepted requirements document was. In

the development of technical systems in particular, beyond the phase of requirements

elicitation, we experience a strong rise (albeit not constant) in the awareness of problems

and solutions through lessons learned over time.

"Requirements are rarely static. Although from the development

management perspective, it is desirable to freeze a set of requirements

permanently, it is rarely possible. Requirements that are likely to evolve

should be identified and communicated to both acquirers and the technical

community. A core subset of requirements may be frozen early. The impact

of proposed new requirements are evaluated to help ensure that the initial

intent of the requirements baseline is maintained or that changes to the

intent are understood and accepted by the acquirer." [ISO29148]

To ensure that you keep changes under control and that you are not controlled or

overwhelmed by changes, as the requirements manager, it is particularly important that you

are prepared for handling changes. Therefore, in the requirements management plan, plan

how you want to handle changes as part of the elicitation of requirements and in the

subsequent phases of the project. The following sections explain the basic concepts for

finding your way in the jungle of continually changing requirements and requirements

documents (version control). The sections also explain the reasons for change and how

these changes can be implemented by a change management process.

5.1 Versioning requirements

Versioning requirements enables you to track the development of a requirement over its

entire lifecycle.

This means that by versioning requirements, at any point in time we can:

▪ Make statements about the frequency of changes

▪ Check the evolution of individual requirements

▪ Access previous versions of requirements

In direct conjunction with versioning requirements, we have to look at configuration

management. Here, specific sets of requirements versions are grouped in a requirements

configuration (see Section 5.1.2).

Requirements Management | Handbook | © IREB 84 | 262

Software configuration management is the discipline for tracking and controlling the

evolution of software. It is essential for the development and maintenance of large, long-

lasting software systems [BSB2008].

The following sections describe:

▪ How a version control can be implemented for requirements

▪ What requirements configurations are

▪ What requirements baselines are

▪ Important points in the parallel further development of requirements

5.1.1 Version Control for requirements and requirements

documents

Version control for requirements refers to the process that enables specific development

statuses of requirements and requirements documents to be kept available throughout the

lifecycle of a system or product.

Definition 5-1:

Version control{ XE "Version control" }: Version control (or a version

control system) is used to document, manage, and restore documents,

files, and individual artifacts (e.g., requirements). Version

control allows you to trace changes to documents and artifacts and

to revise changes made so that you can return to old versions.

Version control therefore enables a sequential consideration of the

evolution of a document or artifact over its entire life.

However, before we look at versioning and version control for requirements, we will digress

briefly to look at the statuses of requirements, as although statuses and versions are closely

related, and are therefore often mixed or confused with one another, they are actually two

different concepts.

Requirements Management | Handbook | © IREB 85 | 262

Statuses of requirements

Definition 5-2:

Status{ XE "Status" } according to [RuSo2009]: "Statuses specify

the progress of the processing of the requirement. If we compare the

life of a requirement with a project plan, then the statuses of the

requirement often correspond to the milestones in the project

plan."

If we look at the evolution of an individual requirement or a requirements specification, over

the course of its lifecycle, this requirement or requirements specification will have different

statuses: for example, starting with "Created" when the requirement is recorded, through "In

evaluation", "Released", and so on, see Figure 9. For an individual requirements artifact,

these statuses can be documented via an attribute, for example (e.g., status), for the

respective requirements artifact (see Chapter 3).

In contrast, documents often contain an introductory part which, in addition to the title, the

author, the date of the last change, and the version number, also contains the status of the

document. In this case, the document status is generally dependent on the status of the

individual requirements in the document.

You can define which statuses and status transitions are permitted for requirements

artifacts or documents individually for your project. The required statuses and status

transitions are dependent on the project being executed and the Requirements Engineering

process, including the planned review cycles.

Figure 9 illustrates a simple status machine that presents the possible statuses and status

transitions for a requirements artifact. For example, a requirement can be created as version

0.1, move to the status "In evaluation", be released, and even implemented, without there

ever being a change to the content of the requirement that would have necessitated a new

version.

Requirements Management | Handbook | © IREB 86 | 262

Figure 9: Statuses and status transitions of a requirement

Versions, versioning, and version control

Compared to the status of a requirement—which represents, for example, a project-specific

lifecycle of the requirement—a requirement version describes a specific content status of a

requirement. It is therefore possible that a requirement with the status "Created" will go

through several version statuses before being set to the status "In evaluation". The same

applies for a requirement that has been rejected which may be changed in multiple

iterations.

Definition 5-3:

{ XE "Version" }A version is a specific content status of a

requirements artifact or document at a specific point in time.

Versioning allows you to trace the history of a requirements

artifact or document back without any gaps and reset it to an

earlier version. Changes to content always lead to new versions.

From this point on, we refer to the process of creating new versions as versioning. Versioning

can take place at different levels (e.g., at document level or at the level of atomic

requirements).

▪ In the case of versioning at the document level, every change to the content of a

document (e.g., a change to one or more requirements within the document) must

lead to a new version.

▪ In the case of versioning at requirement level, every change to the content of a

requirements artifact must lead to a new version of the requirement.

With regard to versioning, note that the "new" version always completely replaces the "old"

version. If, therefore, you describe one or more textual requirements with a model-based

description (e.g., activity diagram), and the model-based description is merely a

Requirements Management | Handbook | © IREB 87 | 262

supplementary (formalized) view, this is not a new version of the original requirement. This is

actually a supplementary description which may and should exist in parallel. To make this

dependency clear, you can use traceability relationships—we discuss these in Chapter 6.

Versioning enables a version control which allows the requirements manager, for example, to

compare different documentation statuses (versions) with one another or to go back to

previous documentation statuses (versions) (see Definition 5-1: Version control). According

to [WiBe2013], version control includes the following activities:

▪ Definition of a schema to identify versions: Define the schema to be used to version

requirements and requirements configurations and documents. For example, a new

version of the requirement is created by incrementing the version number, but the

requirement ID remains unchanged.

▪ Identification of versions of individual requirements: Define how changes to

individual requirements should be identifiable. Define, therefore, what information

must be recorded to document the change to the last requirement version

sufficiently.

▪ Identification of versions for requirements configurations (or documents): Define

how changes to requirements configurations should be identifiable. Define, therefore,

what information must be recorded to document changes to the last document

version sufficiently.

There is no fixed, prescribed specification for versioning requirements or documents. In

principle, you can identify different versions with whole version numbers (i.e., 1, 2, 3, etc.).

However, the recommendation is to use a versioning based on increments, so that the

version number gives a first indicator of whether the change is a fundamental change or a

marginal adjustment (e.g., correction of a spelling or grammar mistake). An increase in the

increment generally represents a marginal adjustment to the content, whereas the increase

to a full version represents an extensive adjustment to the content. The classification as a

marginal or extensive change is of course primarily a subjective decision. However, these

decisions can be objectified with some conventions.

Versioning requirements documents

When versioning documents, the recommendation is to always use a tool for version

management (version control system). If you are versioning documents manually, it makes

sense to use a versioning indicator (e.g., based on increments) in the file name. This enables a

dedicated version to be created for every revision to the document.

To document a change, it is also important that a document has a document history (on the

first pages, see Table 4) so that the changes performed can be recognized at a glance. The

document history should always contain at least the following information:

▪ The new version number of the document

▪ The date on which the change was performed

▪ The person who made the change

▪ The changes that were made

▪ The reason for the change

Requirements Management | Handbook | © IREB 88 | 262

Version Date Name Change/Reason for Change

0.1 2014-09-19 Reber Initial version

0.2 2014-09-20 Reber Changes to requirements Req-0010, 0011, 0030, 0090

0.3 2014-09-30 Reber Changes to the priority of requirements Req-0010,

0011

1.0 2014-10-02 Reber Version created for first review

1.1 2015-10-15 Reber Changes maintained based on the review results, Req-

0030, 0034, 0035, 0089, 0090

Table 4: Example of a document history

Versioning requirements artifacts

A requirements management tool is recommended for versioning requirements.

Nevertheless, versioning can also be performed without a tool.

When you change requirements (i.e., when you create a new requirement version), as a

minimum, the following information must be documented to describe the change compared

to the previous version:

▪ The new version number of the requirement (whole number or increment)

▪ The change action performed compared to the last baseline (e.g., deletion)

▪ The change made to the content of the requirement

▪ The reason for the change (i.e., what or who was decisive for the change)

▪ The name and role of the person who performed the change

▪ The time of the change (date + time)

Req.

ID

Date Version Name Reason for Change Action Requirement

Req-

30

2014-09-19 1 Reber Created The system

should (a)

Req-

30

2014-09-20 2 Reber Changes due to new

information from the

department

Changed The system

should (b)

Req-

30

2014-10-15 3 Reber Change due to a review

by Max Muller

Changed The system

should (c)

...

Table 5: Example of requirements versioning

Requirements Management | Handbook | © IREB 89 | 262

Note: If you are using a requirements management tool, some of this information (e.g., new

version number of the requirement, the person making the change, the time of the change) will

be documented automatically without you having to invest additional time here.

!

Before Peter Reber's time, requirements were described in Word and Excel

documents. Nevertheless, a minimum level of attribute assignment and

versioning was observed. The example below shows an extract from an old

requirements document. The left column shows the requirement ID together

with the version number—certainly not the best method of documentation, but

better than nothing. Revised or deleted requirements were given a new status

and ID accordingly. We can see two versions for requirement BR_0040: the

rejected v1 ("Revised") and the current v2 ("Modified"). The information about

why the requirement was changed, who triggered the change, and when the

change was performed is not visible here. Nevertheless, there is at least a

minimum versioning which, in the future, should be performed automatically with

a tool as soon as changes are made to a requirements artifact.

Figure 10: Practical example of requirements versioning with Word

Practical tip: Requirements management tools are not yet used in all businesses and therefore,

in everyday life in projects, we often encounter document-based requirements specifications

(e.g., in Microsoft Word).

Requirements Management | Handbook | © IREB 90 | 262

A versioning at requirement level in the manner described above is therefore not possible

without a lot of effort. If you find yourself in such a situation, use this procedure at least at

document level and use the revision mode options or identify your requirement changes clearly

with deletions and comments (see Figure 10).

Of course, this is not the textbook method, but it at least indicates which requirements have

been deleted and which have been changed. Furthermore, in documents, it is helpful to place a

document history at the beginning of the document to give readers a quick overview of the

history of the document and the changes it contains (see Table 4).

Access to current versions

Make sure that all relevant project participants can access the currently valid (released)

requirements versions; this is not necessarily the same as the latest version of the

documentation, which may be in review, for example, and not yet released. However, the

processors of the requirements and the requirements manager must be able to access the

latest version of a requirement at any point in time.

It is also important that changes that have led to new versions of requirements are

communicated actively to all stakeholders at defined points in time [WiBe2013]. This

communication usually takes place at the time of the review, when change configurations

(see Section 5.1.2) are put together.

Note: The active communication to the project participants can also be performed by a

requirements management tool if, for example, you have defined beforehand who is to be

informed in the event of a change.

Implementing measures for version control

As the requirements manager, when you create the requirements management plan—that is,

before you document the first requirement—you must define how you want to implement a

version control for requirements and requirements documents in your project.

It is the requirements manager who decides the level (document level or requirement level)

at which version control is to take place, and this decision is dependent on the project scope.

The trend is that for complex projects with hundreds of requirements, version control should

take place at requirements level, even if this means that the effort involved is significantly

higher. However, this pays off over the duration of the project. Via the versioning at

requirement level, you can make sure that you are always talking about the same version of

a requirement over the course of the entire project. This means that you know which

requirement version was in which requirements configuration (e.g., for acceptance or for

development), and you can therefore discuss or distribute a specific version of a

requirement explicitly.

In addition to specifying the level at which versioning is to be performed and the information

that must be documented for new versions, in the requirements management plan, you must

also define who is permitted to perform changes and at what level.

Requirements Management | Handbook | © IREB 91 | 262

In principle, only a limited group of persons should be authorized to make changes (see

[WiBe2013]). These roles and rights must be documented in a roles and rights matrix (e.g.,

RACI) (see also [Oran2013], RACI Model).

Change management limitation

Up to this point, we have discussed the implementation of a version control at different

levels to allow documentation and tracking of any changes at requirement level, for

example. There are many reasons for such changes.

We want to differentiate between two main points in time within a project when changes

occur:

▪ Changes that occur as part of Requirements Engineering up to their final acceptance

or release of the requirements specification

▪ Changes that occur after final acceptance or release of the requirements

specification and thus require a retrospective scope change

Changes of the first type can usually be considered directly and flow into the specification

as a new version of a requirement if they do not require a fundamental change to the project

scope. Changes of the second type must always be processed via a regulated change

management process.

5.1.2 Requirements configurations

As part of the elicitation of requirements, at certain points in time you create requirements

configurations—for example, to allow the performance of a review at a defined and

consistent status of your requirements, or to obtain an estimation of the effort for the

subsequent development phases for the requirements configuration.

Definition 5-4:

Requirements configuration{ XE "Requirements configuration" }

according to [IREB2015]: "A requirements configuration comprises a

defined set of logically related requirements, whereby at most one

version of each requirement is contained in the requirements

configuration."

A requirements configuration is therefore a specific set of requirements (requirements

artifacts) which is provided, for example, for review at a specific point in time and contains a

specific version of the requirements. The following definition also highlights the

communications aspect of configuration management so that all reviewers or users of the

version involved receive a standardized and consistent and contiguous requirement status.

Requirements Management | Handbook | © IREB 92 | 262

Definition 5-5:

Configuration management{ XE "Configuration management" } from

[ISO29148]: "The purpose of the Configuration Management Process is

to establish and maintain the integrity of all identified outputs

of a project or process and make them available to concerned

parties."

According to [PoRu2015], requirements configurations have the following properties:

▪ Logical connection: The selected requirements versions of a configuration are

connected logically and are selected for a specific purpose.

▪ Consistency: The combined requirements and requirements documents are

consistent and belong together logically.1

▪ Uniqueness: The configuration for the selected requirements versions has an

identifier that identifies it uniquely.

▪ Unchangeability: The configuration is based on a specific version status of the

requirements. Changes to these requirements versions lead to new versions that can

be used in new configurations.

▪ Basis for reset: Configurations offer defined statuses to allow requirements to be

reset to an older, consistent requirement status (version status).

Note: The creation of a requirements configuration can be considered, for example, as a

consistent requirements document, which is to be checked and accepted, with selected

versions of requirements artifacts for a planned project phase. Compared to the requirements

baseline (see the following section), the requirements configuration does not necessarily have

to contain only stable requirements artifacts. The focus here is more on the logical connection

in a "requirements composition" (i.e., a requirements configuration).

5.1.3 The requirements baseline

You should already be familiar with the term requirements baseline from the CPRE

Foundation Level. Baselines are generally a "frozen" documentation status which is created,

for example, when certain milestones (handover of a specification for cost evaluation) are

reached.

1 In practice, configurations are often created that are not consistent in terms of content. Such configurations are built out of

the need to freeze the current work status in order to be able to access it later if necessary. For example, a configuration can

be created that documents the starting point of review activities.

Requirements Management | Handbook | © IREB 93 | 262

Definition 5-6:

Requirements baseline{ XE "Baseline" }: Requirements baselines are

selected, formally checked, and released requirements

configurations that cover stable requirements artifacts and often

reflect a fixed development and delivery status for a product

(e.g., for a specific product release).

Requirements baselines are therefore generally visible to the outside world, whereas simple

requirements configurations are used primarily for internal purposes (see [WiBe2013] and

[Pohl2010]).

Definition 5-7:

Release management{ XE "Release management" } according to

[BSB2008]: "Release management is concerned with bundling

requirements for a product, with the scheduling for the manufacture

and, ultimately, the delivery of a finished system. [...] For a

release, all current configuration elements are usually managed

under one common label and the software is then created from the

configuration thus created."

The requirements configuration defined as the requirements baseline should contain only

requirements planned for a particular version of the product (e.g., release) and which are

stable, and not those that are only proposed or are still in progress or being discussed at this

point in time [WiBe2013]. Therefore, when selecting requirement versions for a requirements

baseline, pay attention to their status (see also Chapter 3).

Requirements baselines support three essential activities in the development process (see

[Pohl2010]):

▪ They form the basis for planning delivery increments (releases) because for the

customer, they represent a visible configuration of stable requirements versions.

▪ They are used to estimate the implementation costs of a particular release.

▪ They enable a comparison with competing products on the market with the defined

release.

A suitable point in time for creating a requirements baseline can be when a milestone is

reached: for example, the commissioning of the design of the architecture or the

implementation (see [WiBe2013]). Milestones for requirements baselines and for

configurations are generally specified by the project or the development process.

Requirements Management | Handbook | © IREB 94 | 262

Figure 11 shows two example milestones: "For review" and "Creation of the architecture

design". For the first milestone, versions of requirements artifacts that have the status "In

evaluation" can also be used. In contrast, for the second milestone, only versions of

requirements artifacts that have the status "Released" should be used.

Note: In your requirements management plan, define the purpose for which requirements

baselines are to be created, who is permitted to create requirements baselines, and last but not

least, the criteria for selecting requirements artifacts for a requirements baseline.

Consider the requirements artifacts contained in the requirements baseline as an accepted

and commissioned specification. The requirements contained herein can only be adjusted

via a controlled change management process.

Figure 11: Possible milestones for requirements configurations and requirements baselines

5.1.4 Branching requirements

The term branching{ XE "Branching" } originates from configuration management and allows

the parallel development of systems in different development branches. Branches are used,

for example, as part of fixed, scheduled releases to start the further development for the

subsequent release on one branch, while on the parallel "production branch" of the system

that has already been delivered, only bug fixing and minimal changes may be performed.

The two development branches are then generally merged again before the next main

release so that, for example, the errors that have already been corrected in the production

branch do not find their way back into production with the new release.

Requirements Management | Handbook | © IREB 95 | 262

Even though the term branching originates from configuration management and is therefore

more closely associated with implementation, we also find this concept in requirements

management, as the branches in the requirements strands reflect the branches in the

development strands.

In contrast to versioning requirements, branching requirements allows multiple versions of

requirements to be valid in parallel simultaneously. The branching mechanism is used, for

example, to perform small and urgent changes in parallel with ongoing development.

To create a requirements branch{ XE "Requirements branch" }, a valid requirements

configuration (e.g., the last requirements baseline) is selected that the new requirements

branch should build on. This configuration is copied to a new requirements branch, changed,

versioned, and summarized in a new requirements configuration. Think of a requirements

branch as, for example, a copy of a selected document version that can be worked on in

parallel. The main point here is that the same requirement may exist in two branches in

parallel, and there is thus one valid version of a requirements artifact for each branch.

Figure 12: Branching and merging of requirements configurations

Once the branched requirements configuration has been successfully implemented, at a

later point in time—generally before a new release—the two branches are merged again.

From this point on, there is again only one version of the respective requirements artifacts so

that the subsequent changes only have to be performed in one version, see the example in

Figure 12.

In addition to refining and versioning requirements, requirements branching is an additional

dimension of the complexity of handling requirements in requirements management which

should be used sparingly and deliberately. Otherwise, the uncontrolled use of requirements

branches can lead to more chaos than benefit.

Problems that occur in connection with requirements branches include:

▪ Requirements branches make it more difficult to identify requirements uniquely

▪ In addition to versions and refinements, requirements branches increase the

complexity of Requirements Engineering and requirements management

Requirements Management | Handbook | © IREB 96 | 262

▪ Requirements branches generate redundant requirements information which must be

maintained in parallel and then merged again in the long term

In individual cases, requirement versions that have arisen in requirements branches are

intentionally not merged again and both requirement versions are intended to exist

consecutively in parallel. In this case, however, we no longer refer to the same version in

different requirements branches, but rather to variants (see Chapter 7). These variants are

then managed with different requirement IDs so that the requirement variants can still be

identified uniquely.

Practical tip: Requirements branches increase the complexity of managing requirements not

only in Requirements Engineering and requirements management; in the subsequent phases of

software development, parallel developments lead to challenges as separate development and

test environments and teams must be available for every development branch. If software

errors cause delays in the commissioning of branches, this can affect the acceptance and

commissioning of subsequent releases. The number of requirements branches should therefore

be kept low. Companies often have a parallel development branch which is used for bug fixing

and small changes.

5.2 Change management for requirements

IEEE 29148 describes the nature of changes to requirements with the following words:

"Whatever the cause of requirements changes, it is important to recognize the inevitability of

change and adopt measures to mitigate the effects of change. Change has to be managed

by ensuring that proposed changes go through a defined impact evaluation, review, and

approval process, and by applying careful requirements tracing and version management.

Hence, the Requirements Engineering process is not merely a front-end task, but spans the

life cycle. In a typical project the activities of the requirements management evolve over

time from elicitation to change management.“ [ISO29148]

Note: Be ready for changes and schedule them. Establish a simple and effective change

process. The longer a project runs, the greater the probability of changes to your requirements.

An approximate reference value is 1-5% changes per month (see also [Eber2012], [WiBe2013]).

The planned handling of changes is therefore a significant task in requirements

management. What is important here is to accept that changes are the rule and not an

exception.

With regard to changing requirements, we want to differentiate between two main times of

change as these are usually handled differently:

▪ Firstly, the evolution of the requirement up to its final acceptance or release for the

architecture design or the implementation. This is usually a time interval before the

first requirements baseline. As part of this phase for eliciting, analyzing, and

Requirements Management | Handbook | © IREB 97 | 262

negotiating requirements, it is normal that changes are made to requirements without

a separate change management process. Note the rules for versioning.

▪ Secondly, the evolution of the requirement after the final acceptance or as part of

the creation of the design, implementation, or even during operation. These changes

are also normal and can be driven by external factors (e.g., changes in legislation) or

internal factors (e.g., new strategies). You should process these changes via a

corresponding change management process! This is because these changes are

generally those that were not estimated in advance either in terms of time or money

and that have to be reevaluated via an impact analysis.

Definition 5-8:

Change management{ XE "Change management" } according to [BSB2008]:

"Change management regulates the further development of the product

by monitoring in particular the change requests for the product and

the processing of these change requests. Change management monitors

the lifecycle of all change requests across the following steps:

creation, evaluation, realization, testing, and acceptance."

5.2.1 Causes, sources, and timing of requirement changes

There are many reasons for changes to requirements. Requirements for a (software) system

are subject to changes during the lifecycle of the (software) system. These changes can be

triggered by different persons or roles, from different development phases, and in different

project and lifecycle phases.

As a first step, it is helpful to know where changes to requirements originate and what the

causes and sources of changes to requirements are. [RuSo2009] differentiates between the

following sources for changes:

▪ Incident management (technical hotline for the systems): This is where malfunctions

triggered from technical system operation and by system users, and which have to

be rectified, appear. Changes can result from the analysis of these malfunctions.

▪ Department and product management: These groups of people generally create new

requirements for the system which improve the use of the system or reflect new

facets of the system.

▪ Developers: This group of people generally defines change requests relating to the

technical implementation of the system. These changes do not directly influence the

user functionality of a system.

▪ Testers: These people generally define changes aimed at rectifying errors that exist

in the system (due to faulty or incomplete requirements).

According to [Pohl2010], causes of requirement changes include:

Requirements Management | Handbook | © IREB 98 | 262

▪ Errors in ongoing system operation: changes due to incorrect system behavior that

are reported as an incident by the user or application operation. These changes to

requirements result from incorrect or missing requirements, and not from an

incorrect implementation of the requirement.

▪ Context changes: changes that result from changes to constraints in the system

context. These changes can originate from all aspects of the context (usage aspect,

object aspect, IT system aspect, or the development aspect). These requirement

changes result from a changing world and are submitted via the department, product

marketing, or development.

The list above is not a complete list of causes of changes to requirements. It is intended

primarily to give you an insight into why changes occur, and for what reasons and from what

sources changes can originate. Therefore, think about which sources and reasons for

changes you can expect as early as possible.

Note: When analyzing any change to be executed, in addition to the change to the actual

requirement, you must also consider effects on directly and indirectly dependent requirements

and other development artifacts (see Chapter 6). Of course, as the requirements manager, you

are not directly responsible for the architecture design, the test, and the development, but when

the change takes place in "your" requirements, the other roles must be informed about these

changes so that the change can be evaluated in its entirety.

Changes can occur at different times during the entire project and lifecycle of a (software)

system, for example:

▪ During the elicitation of requirements: Adding a new requirement leads to an

adjustment to an existing requirement because the system context has changed.

▪ During the architecture design: An architecture decision for the system architecture

requires that a function previously covered by hardware is to be realized by means of

additional functionality in the software for cost reasons.

▪ During implementation: The implementation of a requirement demonstrates

performance problems which, in turn, can only be resolved by adjusting the actual

requirement.

▪ During the software test: A test result shows that a requirement has not been

implemented in accordance with the specification but the implementation offers a

better solution which is to be retained. In this case, the requirement must be updated

accordingly.

▪ During the acceptance test: During acceptance, you establish that the customer

does not accept the delivery because he envisioned a different implementation of the

requirements but did not document this sufficiently. The requirements must be made

more specific and the corresponding development artifacts must be revised.

▪ During system operation: When software is used, it can become clear that

functionality that has been implemented has gaps for the processing of the business

process and therefore, new requirements must be elicited and existing requirements

changed.

Requirements Management | Handbook | © IREB 99 | 262

The dimensions of the requirement changes (different sources, different causes, and

different times) make change management a complex task that cannot be performed ad-

hoc and on demand. Instead, a dedicated change management process is required (see

Section 5.3).

5.2.2 Types of changes to requirements

As you can imagine, and have almost certainly experienced in your own life, no two changes

are identical. If, for example, you ordered your car with an automatic transmission, but on

delivery you discover that the car has a manual transmission, this results in a complaint (or in

other words: a change request).

However, for you—and for the vehicle supplier—this type of change has a different

significance to a change that you request 6 weeks after your order, namely that instead of

"silver gray metallic" for your exterior finish, you would prefer to have "space gray metallic".

For change management, when handling changes, you should know what types of change

exist so that you can develop a strategy for handling different types of changes. In the CPRE

Foundation Level [IREB2015], the following classification of changes is proposed:

▪ Corrective changes: A change is corrective if it can be attributed to incorrect

behavior during operation or of the product delivered, and the cause of the errors lies

in the requirements.

▪ Adaptive changes: A change is adaptive if it can be attributed to new constraints,

findings, or a context change. This type of change usually originates outside the

project (e.g., legislation).

▪ Exceptional changes: A change is an exceptional change if it can be attributed to

damaging behavior or would lead to damaging behavior. This type of change must be

implemented as quickly as possible to limit the damage. It can be both corrective and

adaptive.

To implement a change to a requirement, change requests must be submitted. These are

then evaluated and processed by a change management process (see Section 5.2).

Amongst other things, a change request covers the desired changes to the content of

existing requirements (i.e., to the current requirements baseline).

Note: Not every change leads to an adjustment to the requirements. For example, software

errors do not lead to a change to the actual requirements; instead, they lead exclusively to a

change or correction of the implementation with reference to the (correct) requirements. From

a customer perspective, the example of the incorrect type of transmission can clearly be

classified as a "bug", as the customer's requirement (automatic transmission) was clearly

documented.

These changes can be characterized as follows:

▪ The change requires the integration of a new requirement (usually a scope

enhancement).

Requirements Management | Handbook | © IREB 100 | 262

▪ The change requires the deletion of an existing requirement (usually a scope

reduction).

▪ The change requires a change to an existing requirement, by means of addition,

reduction, or a change to the content (scope change).

For your change management process (see Section 5.2), note that there are different types

of changes that can require changes in "your" requirements. Define which change requests

you want to discuss in your project cycle, who is permitted to submit these change requests,

and what the request must look like. For example, as a corrective change, a change request

to rectify a defect can look different to a change request for an innovation (that is, an

adaptive change).

!

For his project, Peter Reber defines the types of changes he wishes to discuss

in the project, what he understands under those types of changes, and who is

permitted to submit these change requests and in what form. To do so, Peter

uses the above-mentioned classification, although he uses different

designations which have become established in the company.

Spec. error: A "spec. error" is a corrective change and describes an error in the

product which can be attributed to an incorrect description in the requirement

specification. These changes must be channeled exclusively via the IT Service

Desk and are reported as a change request via the ticket system.

Scope change: A "scope change" is an adaptive change and describes new

requirements for the system from a user, company, or legal perspective.

These changes are usually submitted via product marketing and must be

documented via the template for change requests.

Tuning request: A "tuning request is an adaptive change and describes new

technological requirements for the system to improve operability. These

changes are generally submitted via the IT department and must be

documented using the template for IT change requests.

5.2.3 Analyzing and documenting the stability of

requirements

To move forward in a project, you have to finalize your requirements within a specified time

frame so that you can complete your project on time, within budget, and in quality. To enable

the client to see results and profit from their investment as quickly as possible, a phased or

release-based approach is often selected in which the desired product is taken into

production in stages. To do this, however, you have to know which requirements have

already been agreed and are stable so that you can hand them over to development (see

Figure 11 in Section 5.1.3).

For this selection, requirements should be classified with regard to their stability, and thus

with regard to the probability of the current version of the requirement being changed. On

the one hand, this type of classification for selecting requirements for a specific phase can

Requirements Management | Handbook | © IREB 101 | 262

be done solely by evaluating the stability (see Chapter 3), or alternatively, a corresponding

prioritization technique (see Chapter 4) can be used which, in addition to the stability,

includes other aspects—such as the expected benefits from the requirement—in the

evaluation. The stability of the requirement should always be considered in the evaluation

when selecting requirements for a target release because the stability is relevant, amongst

other things, for estimating the risk of releasing a selected requirements configuration

(requirements baseline) for implementation.

Practical tip: As mentioned at the beginning, a change rate of 1–5% per month can be expected

after the phase of eliciting and documenting requirements. This means that if you have 1,000

project requirements, it is not uncommon for 20 requirements to change per month.

If more than 10% of the requirements in your project change per month after the requirements

have been released, together with the client, you should think seriously about the project goal to

avoid a creeping scope extension.

At this point, you will justifiably ask how you can select a requirements configuration or how

you can establish that a set of requirements (requirements configuration) has progressed so

far that a requirements baseline can be created and handed over to development without

the first changes to these requirements being submitted just a short time later. The answer is

that nobody can predict this precisely.

However, even if you are not psychic, you can make a statement about the probability of

changes to your requirements. The following rules (heuristics) will help you to evaluate the

probability of changes to requirement groups in a short time with limited knowledge and

incomplete information (see [VanL2009]):

▪ Requirement groups that serve the same goal and are generally highly stable

(measured by the frequency of changes) have a lower likelihood of change than

individual requirements.

▪ Goals are generally more stable than solution-oriented requirements.

▪ Functional requirements that meet the core goals are generally more stable than

quality requirements.

▪ Functional requirements that repeatedly appear in the set of requirements (as

amalgamations, extensions, or variants) are usually considered as stable

requirements.

▪ Requirements describing alternative choices should be handled with particular

caution and are generally less stable than the above, as decisions are often based on

incomplete knowledge and assumptions.

▪ Requirements that are assigned to a variant or enhancement of the system are more

stable than requirements that have not yet been assigned.

▪ Requirements that were frequently changed until very recently are unlikely to be

stable.

Define, therefore, for yourself and for your team, the criteria according to which

requirements baselines are to be created: that is, which requirements may flow into a

Requirements Management | Handbook | © IREB 102 | 262

requirements baseline (in the sense of defined evaluation criteria). Make sure that

corresponding attributes for documenting the requirement status, the stability, the urgency,

etc. are created at an early stage (see Chapter 3) and in particular that they are maintained

so that at any point in time, you can select the correct requirements for stable requirements

baselines.

5.3 Change management process

According to ITIL, change management{ XE "Change management" }{ XE "Change

management" } ensures that changes are implemented within the IT infrastructure in a

controlled manner. "The purpose of change management is to 'control the lifecycle of all

changes, enabling beneficial changes to be made with minimum disruption to IT services'...by

following a well-defined...process" within the organization [Oran2013].

The change management process achieves this by defining activities, responsibilities, and

necessary artifacts that describe a clear procedure for handling change requests for

requirements.

In most change management processes, the Change Control Board{ XE "Change Control

Board" } (CCB) plays an important role in the change process. In ITIL, it is called the CAB =

Change Advisory Board{ XE "Change Advisory Board" }. [WiBe2013] describes the Change

Control Board (change committee) as { XE "Change committee" }a group of persons with

different interests (e.g., project manager, developers, testers, IT department, Help desk)

which, for every change request, decides whether and when it should be implemented.

The CCB decides whether, based on the impact analysis conducted, a change request is

accepted, rejected, or postponed (see [WiBe2013]). The aim is to identify the effect that a

change has on all directly and indirectly affected systems and processes.

!

The IT of the example bank where Peter Reber is employed works according to

a company-specific project process. Therefore, Peter has a good basis for

establishing a change management process and for defining interfaces to

supplying and implementing processes.

In the following model, Peter has outlined the interfaces to Change

Management. In the illustration, we can see that problems that are identified by

customers and in the IT department are first evaluated by Problem

Management before a change request is submitted. The change management

process itself is implemented by the Change Control Board (CCB). Members of

the CCB include the project manager, user and IT representatives, and Peter

Reber as the requirements manager. Change Management receives change

requests from the departments (e.g., product marketing, the legal department)

as well as from Problem Management. Changes that are accepted and

implemented by the CCB are handed over to Release and Deployment

Management as implementation requests. Peter Reber's task is to obtain all the

required information from the experts before the CCB meeting—for example,

Requirements Management | Handbook | © IREB 103 | 262

a cost evaluation, the importance of the change, effects on usability and

security.

Figure 13: Example interfaces to Change Management

In the following we will concentrate on the change process itself. To ensure that you can

integrate changes purposefully, plan a simple and efficient change process for your project.

[WiBe2013] provides a few useful tips in this regard:

▪ Define the goal of the change management process.

▪ Define the roles and responsibilities in the change management process.

▪ Define the input criteria for change requests.

▪ Define the unique statuses and status transitions that a change request can progress

through.

▪ Define a "lean" change management process.

▪ Define output criteria for the process.

▪ Define how changes are to be reported.

Proposals for change management processes can be found in the CPRE Foundation Level

and in many other literature sources: [PoRu2015], [PMI2013], [VanL2009], [WiBe2013].

Due to the wide variety of properties and differences in processes, there is no one unique

answer as to which process is most suitable for your project. Above all, the process you

select must fit with the processes executed in the company and must be accepted.

However, there is no fundamental difference in the basic activities of a change management

process.

Requirements Management | Handbook | © IREB 104 | 262

The trigger for change management is always the receipt of a change request (for further

details about the change request, see Section 5.3.1). The main activities of a change

management process can be summarized as follows:

▪ Step 1 - Preparing the change request

▪ Step 2 - Formal check of the request: This checks whether the change request

meets the defined input criteria.

▪ Step 3 - Classification of the change request: Classifying a change request involves

determining whether the change is a corrective, adaptive, or exceptional change. The

requirements manager is involved in the evaluation to determine the cause of a

change.

▪ Step 4 - Impact analysis for the change: The goal of the impact analysis is to

estimate and document the consequences of changes. These consequences must be

evaluated not only for other requirements, but also for other artifacts (architecture,

source code, test cases, training materials). Use the documented traceability

information for this evaluation (see Chapter 6). The goal is to determine the required

adjustment effort for the changes requested.

▪ Step 5 - Decision about the implementation of the change request: The results of

the impact analysis are used by the Change Control Board to determine whether to

approve or reject the change request. It is not always reasonable to accept and

implement a change request. Reasons for a possible rejection of a change request

are, for example:

▪ The change is too costly and is not justified in relation to the effort required for

its implementation or its expected benefit.

▪ The desired change contradicts other requirements.

▪ Implementation of the change would lead to too high a risk with regard to the

stability of the (software) system under consideration.

▪ The change is not covered by a contract.

For reasons of traceability and of achieving agreement among the stakeholders

involved, it is essential to document the decisions of the Change Control Board.

▪ Step 6 - Prioritization of the change requests: The change requests accepted are

prioritized by the Change Control Board (e.g., according to cost and benefit for

adaptive changes, or frequency and effect of the error for corrective changes) (see

also Chapter 4).

▪ Step 7 - Scheduling of the change requests for implementation: Accepted change

requests are scheduled for implementation, for example, via a project, release, etc.,

and are then implemented.

The actual change begins after the change management process. It is implemented either

via an ongoing project or a new project. The responsibility for implementation generally lies

with Change Management.

For requirements management, at this point it is relevant that the required changes to the

requirements artifacts are performed carefully and, after the change, the requirements

specification is in a consistent state again.

Requirements Management | Handbook | © IREB 105 | 262

To perform the change, use the existing traceability to identify all artifacts to be changed.

When changing the requirements artifacts, remember that for the changed requirements,

you have to:

▪ Create a new version (e.g., V07, on 08/12/2014)

▪ Update the status of the new requirement version (e.g., deleted or changed)

▪ Document the type of change (e.g., corrective change)

▪ Document the reason for the change (e.g., requirement obsolete due to CR-1287)

▪ Update the existing traceability relationships

Note: You should also create evidence of what was changed and why, so that any other person

can trace why a change was performed and which changes a specific change request led to.

Consider the change request as a new artifact and create new traceability relationships

between the change request and the changed requirements artifacts.

5.3.1 The change request

Change requirements{ XE "Change requirement" } and requirements changes{ XE

"Requirements change" } are described by a change request{ XE "Change request" } (CR{ XE

"Change request" }). As part of your requirements management plan, you should define a

template for a change request. An example of a template for a change request is shown in

Table 6. Depending on the company and the project, however, complete document

templates may also be used. Regardless of the form, make sure that the template contains

all attributes relevant for the change request. You can use the attributes proposed for a

change request in Table 6 as a basis.

Contents Description

Project name Designation of the project that the requested change applies to

Request number Sequential number of change requests within a project

Title Title of the desired change

Date Date of the change request

Requester Name of the requester

Origin Source or origin of the change (e.g., marketing, management,

customer, test)

Functional responsibility Name or department with functional responsibility for the original

functionality

Change type Type of change request (e.g., defect, innovation, tuning)

Requirements Management | Handbook | © IREB 106 | 262

Contents Description

Status Current status of the change request (e.g., evaluated, accepted,

rejected)

Requester's priority Priority of the change from the perspective of the requester

Implementation priority Priority of the change from the perspective of the change committee

Tester of the change

request

Name of the person who tests the execution of the change (including

effects)

Update date Date of the last update to the change request

Version Version number of the change document

Release Assignment of the release for which the change is to be implemented

Specification effort Forecast specification effort for the change

Implementation effort Forecast implementation effort for the change

Description of the change Description of the change(s) to be executed

Comments Comments about the change request

Table 6: Attributes for a change request (based on [Pohl2010])

5.4 Content for the requirements management plan

In your requirements management plan, document how you want to version requirements

and documents in your project. Define the statuses that a requirement may take, how the

status transitions are to take place, and who is permitted to change the status of

requirements artifacts (see Figure 9). In addition, define the basis for creating a requirements

baseline and what the creation of such a baseline means for the subsequent requirements

management process—for example, following a requirements baseline, changes are

accepted only via a change management process. In the requirements management plan,

define how you want to handle changes in the project, how changes are to be documented,

whether there is a change committee, who makes up this change committee, etc.

You can use the requirements management plan to explicitly inform all stakeholders about

the planned methodological procedure to ensure that the process you have worked out is

actually put into practice. A requirements management plan also gives participants who join

the project at a later date the opportunity to become acquainted with the organizational and

methodological processes.

Requirements Management | Handbook | © IREB 107 | 262

5.5 Literature for further reading

[Eber2012] C. Ebert: Systematisches Requirements Engineering. Dpunkt, 4th edition, 2012

(available in German only).

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.

Springer, 2010.

[RuSo2009] C. Rupp & die SOPHISTen: Requirements-Engineering und –Management,

Hanser, 5th edition, updated and extended, 2009. Chapter 15 (available in

German only).

[VanL2009] A. van Lamsweerde: Requirements Engineering – from System Goals to UML

Models to Software Specifications. John Wiley and Sons, 2009.

[WiBe2013] K. Wiegers and J. Beatty: Software Requirements, 3rd Edition. Microsoft Press,

2013.

[BSB2008] Christoph Bommer, Markus Spindler, Volkert Barr: Softwarewartung -

Grundlagen, Management und Wartungstechniken. Dpunkt.verlag, 2008

(available in German only).

Requirements Management | Handbook | © IREB 108 | 262

6 Requirements traceability

"The overall objective of traceability management is to support consistency maintenance in

the presence of changes, by ensuring that the impact of changes is easily localizable for

change evaluation and propagation." [VanL2009]

6.1 Reasons for requirements traceability

As you have already learned in the Foundation Level CPRE [IREB2015], traceability{ XE

"Traceability" } is very important for requirements management. Amongst other things,

implementing traceability enables the following:

▪ Recognition of dependencies between requirements artifacts

▪ Recognition of dependencies between requirements artifacts and other development

and quality assurance artifacts

▪ Provision of evidence of the implementation and quality assurance of a requirement

▪ Analysis and performance of required changes as part of change management

Implementing traceability essentially means maintaining references or links to document

relationships between different requirements artifacts as well as relationships with

predecessor (e.g., business goals) and successor artifacts (e.g., test cases).

Before we continue, let us take a brief look at the different terms used for requirements

traceability in the underlying professional literature. Literature contains different terms for

"traceability": verifiability, traceability, requirements traceability, etc. In this learning unit, we

use the term traceability unless we refer to a specific reference in literature.

6.1.1 What does requirements traceability mean?

Definition 6-1:

Traceability{ XE "Traceability" } according to the IREB:

Traceability is the ability to trace a requirement (1) back to its

origin (stakeholders, documents, justifications, etc.), (2)

forwards up to the architecture design and code artifacts, as well

as (3) to other requirements that this requirement is dependent on.

As the definition above already states, traceability refers to the ability to trace the

dependencies between requirements as well as the dependency of requirements on

predecessor and successor artifacts. The following definition also explicitly addresses the

traceability of a requirements artifact or development artifact over its entire development

cycle or lifecycle.

Requirements Management | Handbook | © IREB 109 | 262

Definition 6-2:

Traceability{ XE "Traceability" } according to [RuSo2009]:

"Traceability is the ability to trace connections and dependencies

between information that arise during the development, creation,

maintenance, and further development of a system at any time."

When we refer to requirements traceability in the following, we are referring to the ability to

trace the dependencies between requirements as well as the dependency of requirements

on predecessor and successor artifacts over their entire development cycle or lifecycle

using documented traceability relationships.

6.1.2 Why traceability between requirements and other

sevelopment artifacts is important

Traceability of requirements is not usually a project goal, but rather a means to an end. A

number of reasons motivating traceability between artifacts can be found in literature, see

[HJD2011], [IREB2015], [WiBe2013], [VanL2009]:

▪ Demonstrability of how goals and requirements are to be achieved

▪ Verifiability as to why, if and how a requirement was implemented

▪ Identification of unnecessary requirements and properties of the system (gold plated

solutions)

▪ Identification of missing artifacts (e.g. missing test cases)

▪ Simplification of assignment of development efforts to requirements

▪ Support for reusability of artifacts

▪ Support for maintenance, administration and further development of systems

Requirements traceability helps to answer important questions in the everyday life of a

project: for example, what effect changing certain requirements has, the level of

implementation effort expected, or how a requirement was implemented or tested.

As the requirements manager, traceability supports you in particular with the following four

analyses (see [HJD2011], [PMI2013]):

▪ Impact analysis{ XE "Impact analysis" }: analysis of which artifacts are affected by a

change (reduction or extension of scope) (see Change Management)

▪ Source analysis{ XE "Source analysis" }: analysis of why a certain artifact (e.g.,

requirement) exists in order to identify and avoid unnecessary requirements, for

example

▪ Coverage analysis{ XE "Coverage analysis" }: analysis of whether all requirements

and subsequent development artifacts have been considered so that the desired

product can be completely recorded, developed, and tested

Requirements Management | Handbook | © IREB 110 | 262

▪ Earned value analysis: analysis to determine work progress (performance value), in

order to compare this against the original project plan and, if necessary, take

appropriate action (see also Chapter 8)

Furthermore, traceability between requirements and other artifacts (e.g., business

processes, legal texts, test cases) is essential to meet certain maturity levels for reference

models (e.g., CMMI), standards/guidelines (e.g., ISO 12207), or legal regulations (e.g., SOX).

6.2 Different traceability views

[VanL2009] describes traceability as follows: "...traceability relies on the existence of links

between items that we can follow backwards, towards source items, and forwards, towards

target items…"—that is, the ability to navigate between predecessor and successor artifacts.

[GoFi1994] differentiates traceability from the perspective of the requirements specification

as follows:

▪ Pre-requirements specification traceability{ XE "Pre-requirements-specification

traceability" } is the traceability of requirements to their origin, for example to the

upstream goals and visions or other sources of requirements from the system

context, such as a reference to existing business rules or stakeholders.

▪ Post-requirements specification traceability{ XE "Post-requirements-specification

traceability" } is the traceability of requirements to successor development artifacts

such as system architecture components, code fragments, test cases.

Figure 14: Extended pre- and post-requirements specification traceability

Requirements Management | Handbook | © IREB 111 | 262

[Pohl2010] shows the extended view of the pre- and post-requirements specification

traceability, with the additional traceability between requirements artifacts (e.g., logical

dependencies between two functional requirements), referring to this as the extended pre-

and post-requirements specification traceability.

Figure 14 illustrates the extended pre- and post-requirements specification traceability. The

extension focuses on the traceability between the requirements artifacts.

In Section 2.1.3, we discussed that in practice, requirements are closely linked to architecture

decisions (twin peaks model). We recommended that to document your requirements in a

structured way, you should introduce different levels of detail. In principle, this aspect is also

addressed by traceability between requirements, although here there is no explicit

differentiation between, for example, logical relationships between requirements at one

level, or a detailing at a deeper level. However, we want to explicitly include this

differentiation in our examination.

From this point on, in our examination of requirements traceability, we differentiate between

the following dimensions of traceability:

▪ Traceability between requirements at the same level of detail: This type of

traceability describes, for example, content-related dependencies between

functional requirements.

▪ Traceability between requirements at different levels of detail: This type of

traceability describes, for example, the detailing of legal requirements for system

requirements (see Section 2.1.3).

▪ Traceability between versions of requirements: This type describes the traceability

of the evolution of a requirement over time. A special feature of this view is that there

is only one valid version at a given time.

▪ Forwards traceability from requirements to downstream development artifacts:

This type of traceability describes, for example, dependencies that document the

implementation/realization of a requirement up to the system component or test

case.

▪ Backwards traceability between requirements and upstream artifacts: This type of

traceability describes the justification or source of a requirement.

6.3 Relationship types for traceability relationships

"Traceability links are thus aimed at localizing items, their origin, rationale and impact. To

enable item tracing, such links must be made explicit and documented." [VanL2009]

This excerpt from [VanL2009] states that traceability relationships between artifacts that

are dependent on one another must be documented explicitly so that these dependencies

can be traced at a later point in time.

[VanL2009] also describes the basic principle of traceability as follows: "In a production

chain, an item is traceable if we can fully figure out where the item comes from, why it comes

from there, and where it goes to – that is, what it will be used for and how it will be used“.

Requirements Management | Handbook | © IREB 112 | 262

To enable requirements artifacts to be traced back to their origin and to their successor

development artifacts, and for the traceability relationships to clearly indicate why this

dependency exists, different types of traceability relationships are required.

Of course, traceability relationships could be described in principle by one single relationship

type: for example, "dependent_on".

However, in this case, the actual reason for the relationship would not be clear from the use

of the documented traceability relationships, which means: does this traceability relationship

express that there is a logical dependency between two requirements, does it express that a

requirement is detailed by another requirement, or does it even express that two

requirements exclude each other because they are different variants? The background to

the traceability relationship is missing. This background makes a subsequent use of the

documented traceability relationships valuable for impact analyses, for example.

Here, [VanL2009] states: "The more specialized the dependency, the more specific the

reason for it, the more accurate the link, the easier its correct establishment and the more

accurate its analysis for multiple uses in traceability management.“ Where traceability

relationships are used and defined, however, there is no uniform definition or

recommendation for the use of relationship types in literature.

6.3.1 Classes of relationship types for traceability

[Pohl2010] forms five classes of relationship types for documenting traceability and these

can be used dependent on the traceability goal:

Condition: The class "condition" groups traceability relationships to describe content-

related dependencies between two artifacts. This class includes the following relationship

types, for example:

▪ Limitation: This relationship expresses that there is a limitation between a source

artifact and a target artifact.

▪ Precondition: This relationship expresses that a source artifact is a precondition for a

target artifact; that is, one requirement is the precondition for the fulfillment of the

other.

Content: The class "content" groups traceability relationships that describe content-based

comparisons between two artifacts. This class includes the following relationship types, for

example:

▪ Equality: This relationship expresses that a source artifact and a target artifact are

identical from a content perspective.

▪ Contradiction: This relationship expresses that a source artifact and target artifact

contradict one another, which leads to a logical or content-based inconsistency.

▪ Conflict: This relationship expresses that a source artifact is in conflict with a target

artifact. However, this conflict does not necessarily lead to a contradiction; it merely

hinders the realization of the target artifact.

Requirements Management | Handbook | © IREB 113 | 262

Documentation: The class "Documentation" groups traceability relationships that provide

further information about an artifact. This class includes the following relationship types, for

example:

▪ Example_for: This relationship expresses that a source artifact represents an

example for a target artifact—for example, a scenario for a solution-based

requirement.

▪ Test_case_for: This relationship expresses that a source artifact is a test case for a

target artifact—for example, a test case for a solution-based requirement.

▪ Responsible_for: This relationship expresses that the person or the role of a source

artifact is responsible for a target artifact—for example, the role "Customer support"

is responsible for the scenario "Cancel account".

▪ Background: This relationship expresses that a source artifact provides background

information for a target artifact—for example, a company guideline for security

requirements provides the background for the requirement for customer

authentication.

Abstraction: The class "abstraction" groups traceability relationships that describe

abstraction relationships between two artifacts. This class includes the following relationship

types, for example:

▪ Classification: This relationship expresses that a source artifact provides a

classification for a target artifact—for example, the scenario "Retrieve account

balance" belongs to the class of administrative scenarios.

▪ Aggregation: This relationship expresses that a source artifact provides an

aggregation across multiple target artifacts—for example, the scenario "Authenticate

customer" is an aggregation of "Customer login" and "Mobile TAN".

▪ Generalization: This relationship expresses that a source artifact provides a

generalization for a target artifact—for example, the scenarios "Retrieve postings for

the last 30 days" and "Retrieve postings for the period" are grouped under "Retrieve

postings".

Evolution: The class "Evolution" groups traceability relationships that describe the way in

which a requirement is further developed (e.g., fulfilled, refined, replaced, extended). This

class includes the following relationship types, for example:

▪ Is_the_basis_for: This relationship expresses that a source artifact has provided a

basis for a target artifact—for example, the use of cell phones is the basis for the

quality requirement "Use of a mobile TAN procedure".

▪ Formalizes: This relationship expresses that a source artifact provides a formalization

for a target artifact—for example, an activity diagram formalizes a textual scenario

description.

▪ Refines: This relationship expresses that a source artifact refines a target artifact—

for example, a functional requirement "Customer must be authorized with a valid

password" is refined by a quality requirement "A valid password must be

alphanumeric and must contain 8–20 characters".

Requirements Management | Handbook | © IREB 114 | 262

Unfortunately, there is no one single answer to the question of which of these or other

relationship types that exist in professional literature are actually useful and necessary for

your development project. What is important for your requirements management plan,

however, (that is, for the planning for your Requirements Engineering process) is that

traceability relationship types are selected and used according to the traceability goal (see

Section 6.1).

Tip: Do not be misled into using all possible relationship types from literature. Keep the number

of different types as low as possible to achieve your traceability goal. A large number of

relationship types may allow the greatest possible flexibility and accuracy, but also requires a

much higher effort. What is important is that before you start requirements specification, you

define the relationship types to be used in your project.

The traceability dimensions introduced in Section 6.2 can be one means of support when

selecting the relevant relationship types for your traceability goal. For example, if you only

need to prove how a requirement is implemented and tested, considering traceability

relationships for documenting forwards traceability of requirements artifacts to

downstream development artifacts is sufficient.

6.3.2 Dimensions and relationship types

In this section, we use a couple of example assignments to show which relationship types

can be used for which traceability dimensions. In the examples, all relationship types are

specified from the perspective of the requirements artifact.

Types of traceability relationships for documenting forwards traceability of requirements

artifacts to downstream development artifacts.

▪ Is_tested_by: This type documents that a requirements artifact is verified by a

specific test case. This relationship is generally maintained by the test manager who

creates the test case.

▪ Is_realized_by: This type documents that a requirement is realized or reflected by a

specific software component or system component. This relationship is generally

maintained by the system architect who creates the architecture design artifact.

▪ Is_implemented_by: This type documents that a requirement is implemented, for

example, by a specific function, class, component, etc. This relationship is generally

maintained by the developer.

Types of traceability relationships for documenting backwards traceability of

requirements artifacts and upstream development artifacts.

▪ Fulfills: This type documents that a requirement contributes to the fulfillment of an

upstream artifact (e.g., a business process). This relationship is generally created by

the requirements engineer.

Requirements Management | Handbook | © IREB 115 | 262

▪ Excludes: This type documents that a requirement excludes the fulfillment of an

upstream artifact (e.g., business goal). This relationship is generally created by the

requirements engineer.

▪ Is_in_conflict_with: This type documents that a requirement is in conflict with an

upstream artifact (e.g., a legal requirement). Here, conflict means that the

implementation of the system requirement restricts, but does not exclude, the

fulfillment of the legal requirement. This relationship is generally created by the

requirements engineer.

▪ Is_explained_by: This type documents that there is additional background

information for a requirement that is not contained within the requirement itself. This

relationship is generally created by the requirements engineer (e.g., from a user

requirement for a statutory requirement for handling SEPA mandates).

Types of traceability relationships for documenting traceability between requirements

artifacts at one level of detail.

▪ Is_dependent_on: This type documents that a requirement is dependent on the

fulfillment of another requirement from a technical, logical, or content perspective

(e.g., relationship between a requirement for the creation of a bank transfer and the

requirement for the visual representation of the process).

▪ Is_an_example_for: This type documents that a requirement represents an example

for another requirement. This relationship type can be used, for example, to describe

a relationship between a solution-based functional requirement or a quality

requirement and a descriptive scenario or mock-up.

▪ Is_in_conflict_with: This type documents that two requirements are in conflict with

one another and the implementation of one requirement restricts, but does not

exclude, the fulfillment of the other requirement. It allows the derivation of limitations

that have to be described as part of a project.

▪ Contradicts: This type documents that two requirements are contradictory from a

content perspective and therefore exclude each other in a consistent solution. These

requirements can actually both be required because they are to be implemented in

different products. If both are not required, this relationship indicates contradictions

that must be resolved.

▪ Is_a_variant_for: This type documents that a requirement is a variant of another

requirement which, for example, is to be evaluated as an alternative solution variant.

(Note: An alternative is the explicit modeling of variability via feature modeling, see

Section 7.3.)

Types of traceability relationships for documenting traceability between requirements

artifacts at different levels of detail.

▪ Formalizes: This type documents that a mathematical description formalizes an

informal requirement (e.g., textual business rule). This can also be the formalization

between a scenario description in prose form and a template-based use case

description. Details on modeling requirements can be found in the IREB Certified

Professional for Requirements Engineering module “Requirements Modeling”

[CHQW2022].

Requirements Management | Handbook | © IREB 116 | 262

▪ Details: This type documents that one or more requirements at a lower level of detail

(e.g., system requirement) extends (details) a requirement at a higher level of detail

(e.g., user requirement) to the extent that all relevant aspects for implementation

have been described.

6.4 Forms of presentation for traceability relationships

To document or implement traceability, traceability relationships are used to document

relationships between artifacts (e.g., requirement is tested by test case or textual

requirement is formalized by requirements model).

The goal to be achieved with the traceability defines the artifacts between which traceability

is to be documented and the types of traceability relationships to be used. Depending on the

traceability goal, not every one of the above-mentioned traceability dimensions has to be

considered. For example, if traceability is used to ensure that all business requirements in a

project have been covered by system requirements, or that a system requirement serves at

least one business requirement, then a simple bidirectional traceability relationship of the

type "is implemented by" between these artifacts may be sufficient. However, if traceability

has to be realized according to a specific security standard (e.g., in the aerospace sector), a

consistent traceability from the origin of the requirement right up to code artifacts and test

artifacts may be required, for example.

6.4.1 Implicit and explicit documentation of traceability

Traceability can be documented implicitly or explicitly.

▪ Implicit documentation of traceability{ XE "Implicit documentation of traceability" }:

Implicit traceability can be achieved, for example, through naming conventions,

document structures, glossaries, references, etc.

▪ Explicit documentation of traceability{ XE "Explicit documentation of traceability" }:

Explicit traceability is achieved through defined and deliberately established

traceability relationships between artifacts that are dependent on one another (see

Section 6.4.3).

Implicit traceability is understood as the ability to recognize relationships between

requirements and to predecessor and successor artifacts via structural or stylistic

conventions.

Implicit traceability can be achieved through identical document structures (e.g., in the

customer requirements/system requirements specification and test concept). For example,

a structuring according to the user-centered functionality across the customer

requirements/system requirements specification and test concept will allow you at least to

see, across different development phases, how a set of requirements (for a functionality)

from the customer requirements specification is implemented and how the quality is

assured.

Within a specification, just like inside a book, relationships (and dependencies) to previous

and subsequent chapters, definitions, illustrations, etc. can be described.

Requirements Management | Handbook | © IREB 117 | 262

This means that you can also enable traceability at least at a low granular level within a

specification. For example, within a specification, references from user requirements to

quality requirements or to requirements for the user interface can be documented.

Furthermore, if identical terms (or process verbs) are defined by means of a glossary and

used consistently, in addition to the reference to a chapter, you can also find the

corresponding place in the specification that is actually being referenced.

Nevertheless, implicit traceability documentation is not a sufficient approach for enabling

requirements traceability in the sense of our understanding (see Section 6.1.1).

Therefore, we see the structuring (and thus the implicit documentation) not as a

replacement for documenting traceability, but rather as a supplement to enable traceability

within and between different specifications for the reader of these documents.

However, explicit documentation of traceability is also no substitute for a well-structured,

legible, and understandable requirements specification. In fact, we would go so far as to say

that an understandable structure must never be omitted for the explicit documentation of

traceability. Ultimately, a specification is intended to be read and understood by humans! In

contrast, traceability is more of a means to an end, for example, to provide evidence of

implementation or to analyze the effect of changes (see Section 6.1.2).

6.4.2 Bidirectional and unidirectional traceability

relationships

When implementing traceability relationships, we can differentiate between unidirectional

(directed) and bidirectional (not directed) relationship types.

▪ Unidirectional traceability relationships: Allow traceability from one artifact to

another, but not vice versa. For example, the reference from a test requirement to a

system requirement allows you to check why the test requirement exists or what it

depends on. However, no unique reference from the system requirement to a test

requirement will be found. This type of relationship is often found in document-based

techniques, where relationships are maintained manually, for example by means of

textual references, and refer to either the predecessor or successor artifact. With

regard to the documentation direction, it is important to note that reference is made

to the artifact to which a dependency exists.

▪ Bidirectional traceability relationships: Allow traceability from one artifact to

another and vice versa. Unlike the unidirectional relationship, here you can navigate

between the artifacts, for example from a requirement to a test case (for example,

through a textual reference to a test case) and vice versa, from a test case to the

corresponding requirement that is to be checked with this test case. This type of

relationship allows you to consider the predecessor and successor artifacts (pre- and

post-requirements specification traceability). In requirements management tools,

bidirectional relationships are usually created automatically as soon as a traceability

relationship is created. The tool thus supports navigation or impact analysis in both

Requirements Management | Handbook | © IREB 118 | 262

directions. For purely textual references, however, explicit maintenance is required

for each artifact involved.

Note: In practice, however, and particularly with document-based specifications, we often

encounter unidirectional traceability relationships in which, for example, a system requirement

refers exclusively to a business requirement, but the business requirement has no reference to

the successor artifacts.

6.4.3 Forms of presentation for traceability relationships

A certain amount of effort must be calculated into the project for documenting traceability

(making it usable). This effort is dependent on the traceability goal (forwards/backwards

traceability, traceability between requirements artifacts), on the number of relationship

types to be considered (see Section 6.3), on the number of requirements in the project, and

last but not least, on the form of presentation selected.

There are various forms of presentation for documenting traceability. In this section, we

present the most common forms, see [Pohl2010], [RuSo2009], [VanL2009].

6.4.3.1 Textual references

Documenting textual references is the easiest way to implement traceability relationships

between artifacts. The relationship describes the relationship type and a unique ID of the

artifact to which the relationship refers (e.g., [TC_0021 tests --> FR_3131]). This type of

presentation has the decisive advantage that it can be used independently of a

requirements management tool and is easy to understand. It is usually documented directly

in an artifact, meaning that in a test case, for example, there is a reference to the

requirement.

The documentation can be implemented either in the requirement text itself (Figure 15) or

using attributes intended for this purpose (e.g., "Reference to Test Case" and "Reference to

Requirement"), see Figure 16.

Figure 15: Traceability by means of textual references in the requirement text

Requirements Management | Handbook | © IREB 119 | 262

Figure 16: Traceability by means of textual references with a separate attribute

6.4.3.2 Hyperlinks

Unlike textual references, hyperlinks allow direct navigation to the target artifact. Hyperlinks

are created from the source artifact to the target artifact (e.g., from the requirement to a

test case). Bidirectional relationships can be created by cross-referencing.

Compared to simple textual references, using hyperlinks has the decisive advantage that

you can "jump" directly to the referenced artifacts (see the example in Figure 17). The

example shows a hyperlink from the functional requirement FR_3132 to the test case

TC_0021 (as forwards traceability from the requirement to the test case). It shows the

implementation of a bidirectional traceability relationship: from the requirement to a test

case, and from the test case to the original requirements artifact or to the two requirements

artifacts (FR_3131 and FR_3132).

Requirements Management | Handbook | © IREB 120 | 262

Figure 17: Traceability via hyperlinks

Note: Hyperlinks can generally only be used within one tool or between tools from the same

provider.

6.4.3.3 Traceability matrices

Traceability matrices{ XE "Traceability matrix" } present traceability relationships via

references in the cells of a matrix. One source artifact is documented in each row

horizontally. Vertically, one target artifact is documented for each column. This means that

in the resulting matrix, for each cell, the relationship from the source artifact to the target

artifact can be documented. This type of presentation allows an abstract representation of

the dependencies between two types of artifacts in a matrix.

Traceability matrices are often used to document precisely one relationship type (e.g.,

fulfills) between the source and target artifact (see Figure 18).

The traceability relationship is then documented, for example, as a simple "x" in the

respective cell. In this example, it is a backwards traceability from the test case (TC) to the

requirement (FR), maintained by the person who created the test case.

In the example shown, test case TC_10 tests functional requirement FR_0010; test case

TC_20 tests functional requirement FR_0011; test cases TC_30 and TC_40 test functional

requirement FR_0020, and test case TC_40 also tests functional requirement FR_0030.

Therefore, here we have an N to M relationship.

Requirements Management | Handbook | © IREB 121 | 262

Figure 18: Traceability matrix with one relationship type (FR = functional requirement, TC =

test case)

If different relationship types between two artifacts are to be documented (e.g., between

requirements at one level of detail), the respective relationship types can also be

documented in the cells (see Figure 19).

Figure 19: Traceability matrix with multiple relationship types (FR = functional requirement, TC

= test case)

The illustration shows an example for the use of different relationship types in one

traceability matrix. The matrix should be read from the row (source artifact) to the column

(target artifact): FR_0011 "details" FR_0010; FR_0020 "formalizes" FR_0011; and FR_0010 is a

"variant for" FR_0020.

Requirements management tools such as DOORS create traceability matrices automatically

based on previously created traceability relationships between artifacts. In practice,

however, such matrices quickly become very large and, due to their size, they are difficult to

read and maintain.

Requirements Management | Handbook | © IREB 122 | 262

6.4.3.4 Traceability tables

Unlike traceability matrices, traceability tables{ XE "Traceability table" } enable you to

describe traceability relationships between all artifacts at different levels of detail.

They thus offer a powerful tool for documenting traceability from goals, through use cases

and functional requirements, to test cases. Traceability tables can be used independently of

a specialized requirements management tool to document traceability between artifacts

which are themselves documented in different tools (e.g., Rational Rose, Visual Paradigm,

Quality Center, etc.) and Office applications (e.g., Word, Excel).

Figure 20: Traceability table (BR = business requirement, UC = use case, FR = functional

requirement, CRM = Customer Relationship Management, DWH = data warehouse, GUI = graphical user

interface, TC = test case)

The illustration (Figure 20) shows which artifacts have a relationship with a business

requirement (here, the source). Thus, BR_0010 has a traceability relationship to UC_10; to

functional requirements FR_0012, FR_0013, FR_0016; to system requirements CRM_0011,

DWH_0010, Billing_0020; to the architecture design artifact GUI_0081; and to test cases

TC_0021, TC_0022, TC_0025. What is not recognizable in this example is the underlying

relationship type between these artifacts. However, as the traceability relationship always

refers to the one source artifact, a corresponding extension to add the relationship type to

the respective target artifact would be feasible.

For example, with a supplement for FR_0012, we could describe that business requirement

BR_0010 is refined by functional requirement FR_0012: "is refined by: FR_0012“. Via this

extension, we can even use different relationship types for each source-target relationship

(see Figure 21).

Requirements Management | Handbook | © IREB 123 | 262

Figure 21: Traceability table with relationship types

6.4.3.5 Traceability graphs

Another type of presentation for traceability is traceability graphs{ XE "Traceability graph" }.

In a traceability graph, the nodes represent the relevant artifacts and the edges represent

the relationships between the artifacts. To be able to distinguish between the different

development artifacts (e.g., scenario, requirement, test case) and relationship types (e.g.,

refines, implements, tests) at a glance, the recommendation is to define a corresponding

form of notation for the nodes and edge types. However, the use of traceability graphs is

recommended only if these graphs can be created with a tool automatically based on the

artifacts and relationships. In reality, creating and maintaining such graphs manually is too

time-consuming. In principle, however, traceability graphs provide an easy-to-understand

way of checking dependencies and navigating between the different artifacts. However,

similar to traceability matrices and tables, here the actual artifacts are missing—which is why

the context of the traceability relationship is lost. The following illustration shows an example

of a traceability graph (Figure 22).

Figure 22: Traceability graph

Requirements Management | Handbook | © IREB 124 | 262

The illustration shows traceability relationships between different development artifacts as

nodes (business requirements, use cases, functional requirements, system requirements,

and test cases) and different relationship types as edges (reflected by: tests, formalizes,

refines, is in conflict with).

As we can see from the illustration, traceability graphs provide a graphical option for

representing relationships between different artifacts. However, if you use these graphs,

make sure that you do not select too many artifacts and relationships. With five different

artifacts and relationships, this example is already at the limit of traceability. Ultimately,

these graphical presentations should be used to identify the artifacts between which

dependencies exist. In practice, therefore, the presentation is often reduced to one

relationship type.

These dependencies are usually complex enough to avoid bringing additional complexity

into the model with a high number of artifacts and relationships. However, if you use tools,

you can use filters to display or hide certain artifacts or relationship types so that you are

only ever "confronted" with the necessary complexity.

6.4.3.6 Comparison of the different forms of presentation for

traceability

The table below (Table 7) compares the forms of presentation we have discussed thus far

and identifies their advantages and disadvantages. Table 7 classifies the different forms of

presentation into inline presentation and orthogonal presentation. Inline documentation

includes the forms of presentation "textual references" and "hyperlinks", as here, the

traceability relationships are directly connected to the requirements specification—they are

therefore presented in context. In the case of orthogonal documentation via traceability

matrices, traceability tables, and traceability graphs, the knowledge about the relationships

is generally presented separately from the requirements specification as these descriptions

usually abstract from the artifacts themselves.

Requirements Management | Handbook | © IREB 125 | 262

Form of presentation Positive Negative Suitable for

Inline documentation of traceability

Textual references Can be implemented

independently of tools

and comprehensively

Relationship is visible in

the artifact as plain text

Traceability analyses

are very time-

consuming

Representing

traceability in paper-

based textual

specifications

Hyperlinks Relationship is visible in

the artifact as plain text

Easy navigation

between artifacts to

detect direct

dependencies

Traceability between

different tools is not

always possible

without a lot of effort

Representing

traceability in

electronic

specifications

Orthogonal documentation of traceability

Traceability matrices Dependency between

two artifacts is visible

quickly and easily

Manual creation of

traceability matrices

is time-consuming

and leads to large,

only poorly populated

matrices

Representing only

one single

relationship type

between two specific

artifact types (e.g.,

use cases and

requirements)

Traceability tables Can be implemented

independently of tools

Enable clear

presentation of the

extended pre- & post

requirements

specification

traceability

Allow diverse

traceability analyses

Highly complex to

create

Representing

traceability between

textual and model-

based artifacts in

different

documents/tools

Traceability graphs Graphical presentation

of traceability allows

"abstract" presentation

of traceability

relationships between

artifacts

Can only be used with

appropriate tool

support

Representing

complex traceability

between artifacts in a

requirements

management tool

Table 7: Forms of presentation for traceability relationships

Requirements Management | Handbook | © IREB 126 | 262

6.5 Developing a strategy for project-specific traceability

The creation and use of traceability in a project must be planned specifically. It is not usually

appropriate to document all possible relationships between all artifacts. Instead, at the

beginning of the project, you should think about why traceability is necessary in this project

and at what points which kind of traceability will be required to fulfill this goal. To create a

traceability strategy{ XE "Traceability strategy" }, you have to answer the following

questions:

▪ Traceability goal: why or for what purpose must traceability be implemented in this

project? This question must be answered by the traceability goal which we have

already mentioned several times.

▪ Usage strategy: what should the documented traceability be used for? This question

must be answered by a usage strategy.

▪ Recording strategy: who is responsible for documenting traceability? This question

must be answered by a recording strategy.

▪ Project-specific traceability model: which are the artifacts between which

traceability should be documented, and how should it be documented? This question

must be answered by a strategy for documenting traceability.

Note: In addition to answering these questions, you must in particular make sure that all

participants know the strategy, that they understand it, and that above all they accept it.

Otherwise, regardless of how sophisticated the strategy is, it will disappear without a trace in

everyday project life.

6.5.1 The traceability goal

The traceability goal should answer the question of why traceability is required or should be

established in the respective project. The necessity for traceability can either be due to

external reasons (e.g., to fulfill standards) or reasons internal to the project (e.g., to be able to

process change requests more quickly and more correctly).

Traceability goals triggered by external factors include:

▪ Guidelines or development standards specified by the company to fulfill

certifications: for example, CMMI (SEI capability maturity model integration)

[SEI1999], [SEI2010]; ISO 9000/ISO 9001 [ISO9000], ISO 12207 [ISO12207]

▪ Legal regulations prescribed by laws or ordinances in certain markets and domains:

for example, SOX (Sarbanes-Oxley Act) [USCo2002]

▪ Guidelines specified by certain domains: for example, IEC DIN EN 61508 [DIN 61508],

Department of Defense DOD-STD-2167A

Traceability goals triggered by internal (project-driven) factors include:

▪ To support verifiability to the client: for example, why a requirement was

implemented, how a requirement was implemented, the fact that a requirement was

implemented

Requirements Management | Handbook | © IREB 127 | 262

▪ Quality assurance of specifications through identification of unnecessary

requirements in a specification (without a source) or missing test cases

▪ Support for maintenance, administration, and further development of a system: for

example, through identification of the requirements and successor artifacts to be

changed

6.5.2 The usage strategy

The usage strategy should explain how the traceability information recorded is to be used.

The usage strategy defines how the traceability information documented is to be used by

the team. For example, a usage strategy could refer to the impact analysis where traceability

relationships are used to determine which requirements and successor artifacts are affected

by a change. The usage strategy also defines who is permitted to or should perform analyses

of which artifact types and relationship types.

The impact analysis is generally performed by the requirements manager. Based on the

requirements artifacts to be changed and the traceability relationships documented, the

requirements manager checks which other goals, requirements, architecture design

artifacts, test cases, etc. are affected by the change.

In contrast, with a test coverage analysis from the requirements view, the focus is on

requirements artifacts and test cases to check whether all requirements are covered by test

cases. This analysis can be performed by either the requirements manager or a test

manager.

Possible uses of traceability information that is included in a usage strategy are:

▪ Impact analysis: traceability is used to identify the extent of change in requirements

and successor artifacts

▪ Test coverage analysis: traceability is used to identify the missing test coverage for

requirements

▪ Reusability: traceability is used to identify reusable artifacts

▪ Frequency of change: traceability is used to identify the frequency and the

background to changes to requirements

▪ Proof of implementation: traceability is used to prove the implementation of

requirements

Note: You generally define the usage strategy based on the goals. Think about what you want to

use the traceability information for, who should use it, and which relationship types and artifacts

are relevant for this use.

Requirements Management | Handbook | © IREB 128 | 262

6.5.3 The recording strategy

The recording strategy should answer the question of who implements the required

traceability relationships and keeps them up to date. It defines the responsibility for

documenting traceability relationships. In the recording strategy, for each relationship type

between two artifacts, you define who is responsible for maintaining this relationship and

when they should do so.

A recording strategy can be, for example, the chronological documentation of traceability

relationships proposed by [HJD2011] or [WiBe2013]. The relationship between two artifacts is

created as soon as a new artifact is created (e.g., the relationship type "details" for a user

requirement to a business requirement is maintained by the business analyst as soon as a

user requirement is created for a business requirement).

The advantage of this is that there is a clear responsibility for setting traceability

relationships and that traceability relationships can be created when an artifact is created.

For example, if a business analyst were responsible for maintaining the traceability

relationships between test cases and requirements, they could not do so until the test cases

were created. The business analyst would also have to make assumptions about which test

cases should be used to test the implementation of which requirements. We would have

double the effort here and a corresponding error rate, which is why we also recommend the

chronological documentation of traceability relationships. In this case, you "only" have to

define which person or role in your project is responsible for maintaining the relationship

types you have defined in the project-specific traceability model.

6.5.4 The project-specific traceability model

The aim of the project-specific traceability model is to answer the question of how (that is,

using which form of presentation, see Section 6.4) and between which artifact types

traceability should be documented. Therefore, before you document traceability

relationships, before documenting your requirements, you must be clear about the artifact

types that you want or have to document traceability between (see Section 6.5.1). You

describe these specifications either textually, as an independent information model (for an

example, see Figure 23), or as supplementary information in your requirements information

model.

A project-specific traceability model describes the permissible relationship types between

the relevant requirements artifact types. It also describes how (i.e., with which form of

presentation) traceability must be documented (see Section 6.4.3). The creation and use of a

project-specific traceability model is described in Section 6.6.

6.6 Creating and using project-specific traceability models

The specification of the documentation strategy—that is, the traceability model, with its

permissible artifact types and the permissible relationship types and the form of

presentation—allows a clear presentation to all project participants of which artifact types

Requirements Management | Handbook | © IREB 129 | 262

and relationship types exist and how they must be maintained (see [Pohl1996], [Pohl2010],

[MGP2009], [MJZC2013]). The person(s) responsible for maintaining this information and the

point in time at which this must be done are defined by the recording strategy (see Section

6.4.3).

Note: For the actual implementation and use of a project-specific traceability model that has

been developed for the project or company, the recommendation is generally to use a

requirements management tool that maps the corresponding artifacts, the permissible

relationships, and the corresponding stakeholder roles. Of course, all methodological constructs

can be implemented with conventional Office applications, but often, these lack the option of

analyzing manually set traceability relationships automatically or creating required impact

analyses.

6.6.1 Creating a project-specific traceability model

In a project-specific traceability model, you define which relationship types (e.g.,

is_refined_by; is_tested_by) should or may exist between which artifact types (e.g.,

requirements and test cases).

The following describes a sample process for defining a project-specific traceability model.

▪ Selection of a reference schema:

The first step should be to check whether an existing traceability model can be

reused and adapted. An effective way to define a project-specific traceability model

is to reuse an existing traceability model from a similar project or a company-wide

traceability model. This type of traceability model can serve as a basis for defining

the project-specific traceability model and will usually already contain a large number

of the artifacts and dependencies to be defined.

▪ Selection of the artifact types:

In this second step, you define the artifacts between which traceability should be

ensured in order to support the goal set in the traceability strategy and the usage

scenarios—for example, traceability between use case and functional requirement

and between requirement and test case.

▪ Definition of permissible relationship types between artifacts:

Here you must define which traceability relationships (see Section 6.3) are allowed

between two artifact types—for example, a valid relationship between requirement

and test case is "is validated by".

▪ Specification of the number of traceability relationships:

Here you define the minimum number of relationships expected between the real

artifacts (at instance level of the traceability model)—for example, each requirement

requires one traceability relationship to a test case.

▪ Definition of the dependency between artifacts:

Here you define which artifact is dependent on another artifact—for example, a test

case depends on the content of the requirement. When using unidirectional

relationships, pay attention to referencing (see Section 6.4.2)

Requirements Management | Handbook | © IREB 130 | 262

The example traceability model (Figure 23) presents the different traceability types

permissible between the different artifact types. For example, a requirement can detail

another requirement or a business goal. A requirement is realized by a design element. A

requirement is tested by a test case. In this model, for example, it would not be permissible

for a test case to be connected with a business goal via the relationship type details.

Figure 23: Example of a simple traceability model

With this specification, you can create a clear picture for all participants of the artifact types

between which traceability should be realized and what the valid relationship types are. In

practice, this model can and will be significantly more detailed and more extensive than the

example shown, as there are often more artifact types and relationship types.

Requirements Management | Handbook | © IREB 131 | 262

Note: To create specific traceability based on a project-specific traceability model, the

requirement model elements and relationships in the traceability model (information model) are

instantiated and documented according to the artifacts and relationships defined in the

traceability model.

The traceability model can either be integrated into the requirements information model (see

Chapter 2) or be created as a separate information model. An argument in favor of a

separate traceability model is the focus on the relevant artifacts during the creation of a

traceability strategy (e.g., when the responsibilities are defined). However, an argument in

favor of a joint information model is the central maintenance of, for example, artifact

designations, new artifacts, etc. in the event of changes.

6.6.2 Using a project-specific traceability model

In addition to defining artifacts and traceability relationships, for example in an information

model, further aspects have to be considered for the implementation and use of a project-

specific traceability model:

Definition of the form of presentation

After defining which relationships between which artifacts should be documented, you must

clarify the form of presentation to be used to document traceability relationships. The

selection of the form of presentation for traceability relationships is generally influenced by

the form of presentation of the artifacts—that is, if the requirements artifacts have been

recorded purely in text form, you will probably also document the traceability relationships

as textual references or hyperlinks rather than via traceability graphs. (See Forms of

Presentation, Section 6.4.3).

Providing support for recording data

Recording traceability relationships between artifacts represents an additional effort, which

usually serves other stakeholders (e.g., project managers). Therefore, it is very helpful if the

documentation of traceability relationships is supported as far as possible. This can be done

on the one hand by requirements management tools, or by self-programmed solutions for

example with Word macros.

Creating an alignment between tool artifacts and project artifacts

When using a requirements management tool, a translation into the existing terminology of

the tool is usually required. In this step, identifiers of the artifacts and relationship types

defined in the model are linked to identifiers offered by the tool and referenced uniquely. For

example, if the tool offers only one artifact type "Requirement", but the traceability model

distinguishes between "User requirement" and "System requirement", then an appropriate

mapping and, if necessary, assignment of an additional attribute is needed here, allowing

later differentiation.

Requirements Management | Handbook | © IREB 132 | 262

!

Peter Reber is now faced with the challenge of developing a traceability

strategy for his project. For this purpose, he has defined the following for

himself and his team:

1. Traceability goal

For Peter Reber, the use of traceability is driven by two things: (a) the software

development unit should reach the next CMMI level, and (b) Peter would like to

have the ability to provide evidence that only requirements requested by

management have been implemented.

In the past, there was often unnecessary discussion about the effort involved

here, as management had the impression that IT only implements things that

nobody needs and that is why everything is so expensive.

2. Usage strategy

Peter wants to use traceability essentially for the following purposes:

1. As evidence that only things directly and indirectly justified by business

requirements for the project are developed

2. As evidence that a test case was planned for each requirement

3. To analyze the effects of changes on existing requirements

(1) As evidence that only requirements requested by management in the

requirements specification in the project were implemented. This evaluation is

to be realized via a dedicated relationship type from the development artifact

to the requirement. The evaluation that no development artifacts are created

without a dedicated requirement at business level will be created by the

developer. This presentation should contain all development artifacts with the

associated requirements artifacts. If the evaluation contains development

artifacts that cannot be assigned to a requirement at business level, these

artifacts must be clarified with the designer and the developer to prevent

unnecessary and undesired functionality being implemented.

(2) To check the test coverage, an evaluation of a dedicated relationship type

from the requirement to the test artifact is to be used to ensure that all

requirements are covered by test cases.

This evaluation will be created by the requirements engineer and should

contain all requirements artifacts and the associated test cases. If

requirements have no relationship with a test case, the test manager must

check these requirements.

(3) To support changes to requirements with a targeted change analysis, three

dedicated relationship types are to be introduced: (1) between business and

user requirements, (2) between user and system requirements, and (3) between

the requirements themselves to document logical and content-based

dependencies. This evaluation will be triggered by the requirements manager

(Peter himself) when changes occur. The result should present all predecessor

Requirements Management | Handbook | © IREB 133 | 262

and successor artifacts for a selected set of requirements. For each

requirements artifact, it should be clearly recognizable which predecessor and

which successor artifacts have a relationship with the requirement. This

evaluation then helps with the assessment of the impact this change actually

has on the predecessor and successor requirements artifacts. This means that

it allows you to evaluate the expense (in the sense of person days and costs)

created by the change and whether any particular difficulties (e.g., architecture

changes) are to be expected.

3. Recording strategy

Relationship types between development artifacts and requirements artifacts

(system requirements) are to be maintained by the respective developer as

soon as a functionality is implemented for a requirement.

Relationship types between test cases and requirements artifacts must be

maintained by the test manager as soon as a test case is created for a

requirement. Traceability must be documented as a bidirectional relationship,

which is why the test manager requires restricted write access to the

requirements to record the forwards relationship to the test case.

Relationships between the different requirements artifacts must be

maintained by the requirements engineer and business analysts as soon as a

new requirement is created that (a) represents a detailing of or (b) has a logical

or content-based dependency to an existing requirement and influences this

existing requirement in some way.

4. Creation of a traceability model (documentation strategy)

To implement traceability across different documentation tools and

documents, textual references with attributes intended for that purpose (see

Figure 16) and traceability matrices are to be used.

Peter Reber has documented the traceability relationships to be maintained

between artifacts in the following traceability model.

In the project, there are three levels (classes) of requirements: business

requirements, user requirements, and system requirements.

Business requirements can be detailed either by user requirements or directly

by system requirements. User requirements are always detailed by at least one

system requirement. Requirements themselves (see the abstract class

"Requirement") can be in a relationship with one another via an "influences"

relationship type if they are dependent on each other logically or from a

content perspective. Further detailing of the content is not currently planned.

Each requirements artifact will be tested by a test case and ultimately, every

system requirement will be implemented by a development artifact. There

must be NO development artifacts that do not realize a system requirement.

However, there may be test cases that have not been assigned to new

Requirements Management | Handbook | © IREB 134 | 262

requirements, that is, they are not used directly to check this requirement—

these are regression test cases, for example.

Figure 24: Traceability model for our example Bank AG

6.7 Measures for evaluating implemented traceability

In the previous section, we looked at how you can document traceability and how you can

set up a traceability strategy for your project. However, the traceability strategy that you

introduce must also be put into practice and must not exist merely on paper. Therefore,

during requirements management, at some point the question will be raised as to whether

the traceability strategy set up is being or has been followed, and how completely

traceability relationships between the artifacts have actually been documented.

For this purpose, perform a check to ensure, on the one hand, the quality of the current

documentation with regard to traceability, and on the other hand, to identify problems in the

Requirements Management | Handbook | © IREB 135 | 262

traceability strategy. Checking traceability information provides an insight into the quality of

the current documentation.

The following measures can support you in checking the completeness and quality of the

traceability relationships:

▪ Ratio of the number of correct traceability relationships (e.g., has the correct

relationship type been used, does the referenced artifact still exist) to the total

number of traceability relationships (correctness)

▪ Ratio of the number of existing traceability relationships to the total number of

traceability relationships required (completeness)

▪ Ratio of the number of requirements with traceability relationships to the total

number of requirements (density)

▪ Ratio of the number of test cases with traceability relationships to requirements to

the total number of test cases (backwards traceability, test case to requirement)

▪ Ratio of the number of requirements with traceability relationships to a test case to

the total number of requirements

▪ Ratio of the number of documents with correct references to the total number of

documents (e.g., does the document exist in the specified directory)

Note: Note that the checks for correctness in particular cannot be fully automated. Content

checks in particular require a human inspection. Automated checks can be used, for example,

to check the existence of artifacts or documents. Furthermore, restricted statements about the

correctness of relationship types would be possible if the check of the relationships used were

based on the traceability model created and, for example, a relationship type is detected

between two requirements that may only be set between test cases and requirements.

A low number of traceability relationships compared to the number of artifacts suggests

that the relationships have not been maintained consistently and completely. On the other

hand, a low number of correct relationships in relation to the total number of relationships

suggests that either relationships were negligently maintained, or that changes were not

consistently applied to all the artifacts concerned.

Any deviation may have different reasons that need to be discussed. For example, create a

threshold value for each dimension that you want to achieve. If this threshold value is not

met, you should check why.

Furthermore, based on your usage strategy, check whether suitable results are achieved. If

you do not get the results you want, this can be for at least two reasons: (1) the recording and

documentation strategy was not followed satisfactorily, or (2) the documentation strategy

was not extensive enough to fulfill your usage strategy.

Requirements Management | Handbook | © IREB 136 | 262

Note: Follow up and check whether your traceability strategy is actually being put into practice

or whether it was just an ideological definition. If you find out that the traceability strategy is not

being followed, or is not being followed satisfactorily, find out why and try to remove the

obstacles (too complicated, not understood, too time-consuming, no tool support, etc.).

Possible reasons for missing or incorrect documentation of traceability are:

▪ The necessity of documenting traceability is not known within the team (the benefits

may not have been understood)

▪ Missing traceability strategy within the team or the traceability strategy has not been

understood

▪ Time constraints in the project do not allow documentation of traceability

▪ There is no agreed and accepted traceability model within the project team

▪ Insufficient tool support for recording traceability relationships

6.8 Challenges for traceability between textual and model-

based artifacts

Traceability between textual artifacts (e.g., functional requirements) and model-based

artifacts (e.g., activities in UML activity diagrams), or between model-based artifacts

themselves can only be achieved with high effort and is therefore not put into practice

frequently in real life.

The reasons are generally a lack of integration between model-based and text-based

Requirements Engineering and requirements management tools, as well as the missing

unique (at least visible) reference for model elements (e.g., link from a textual requirement to

a class in a UML class diagram). Of course, this class has a unique identifier somewhere

within the tool or in the properties, but it is difficult for a user to find this. Even though today's

tools do not offer complete, high-performance support for linking model artifacts with

textual requirements artifacts, there are options for establishing traceability across these

different artifacts. Possible solutions include either using separate labels in the identifiers

here or creating unique textual identifiers via glossaries that can be referenced. Figure 25

shows an example for a tool-independent implementation of traceability between a use case

model and textual requirements.

Requirements Management | Handbook | © IREB 137 | 262

Figure 25: Traceability between textual and model-based artifacts

Figure 25 shows an example of a traceability table. Here you can see that there is a

traceability relationship between functional requirement FR_0012 and use case UC_10. In

principle, the relationship type could be added to the traceability table (see Section 6.4.3.4).

Figure 26: Traceability between textual and model-based artifacts

Figure 26 above shows a further example for traceability between textual and model-based

artifacts. In this example, there is a traceability relationship from textual requirements to

Requirements Management | Handbook | © IREB 138 | 262

activities in an activity diagram. In activity diagrams in particular, this type of traceability can

be used for a better description of the individual activities and conditions. For this purpose, in

the example, every activity was described with an identifier (e.g., ACT_00xx) in front of the

actual name. Here, the textual requirement references (as a unidirectional relationship) to

the activity diagram and the corresponding activity via a textual reference. Bidirectional

relationships can also be represented, but this generally makes such models more difficult to

read, which means that you have to weigh up what is more important—bidirectional

traceability or the legibility of the models.

Practical tip: Some modeling tools support the realization of traceability between models and

textual artifacts via word patterns or glossaries.

6.9 Content for the requirements management plan

Document the traceability strategy you define, including the traceability model, in your

requirements management plan (see the case study in Section 6.6). At this point, it is less

important how (i.e., in which form) you integrate the things into your requirements

management plan, and more important that you document your thoughts and definitions as

to how you want to record, present, and use traceability in your project in your requirements

management plan. This is the only way to discuss and agree these concepts with all

stakeholders involved before the project starts.

Furthermore, the explicit documentation of your traceability strategy in a requirements

management plan means that participants who join the project at a later stage can quickly

familiarize themselves with the project and read the organizational and methodological

specifications.

6.10 Literature for further reading

[GoFi1994] O.C.Z. Gotel and A.C.W Finkelstein: An Analysis of the Requirements

Traceability Problem. In Proceedings of IEEE International Conference on

Requirements Engineering, 1994.

[HJD2011] E. Hull, K. Jackson, and J. Dick: Requirements Engineering. Springer, 3rd Ed,

2011.

[MGP2009] P. Mäder, O. Gotel, and I. Philippow: Getting Back to Basics: Promoting the Use

of a Traceability Information Model in Practice. In: Proceedings of 5th

International Workshop on Traceability in Emerging Forms of Software

Engineering (TEFSE2009), Vancouver, Canada, May 2009.

[MJZC2013] P. Mäder, P.L. Jones, Y. Zhang, and J. Cleland-Huang: Strategic Traceability

for Safety-Critical Projects. In: IEEE Software, Volume 30, Issue 3, May/June

2013.

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.

Springer, 2010.

Requirements Management | Handbook | © IREB 139 | 262

[VanL2009] A. van Lamsweerde: Requirements Engineering – from System Goals to UML

Models to Software Specifications. John Wiley and Sons, 2009.

Requirements Management | Handbook | © IREB 140 | 262

7 Variant management for requirements

Before we look at variant management{ XE "Variant Management" } in the context of

requirements management and describe how you document variability in requirements, we

will explain a couple of terms from product line development.

We must first distinguish between the terms "product family" and "product line" to

strengthen the understanding for product lines.

Definition 7-1:

Product family{ XE "Product family" }: A product family is a set of

connected products that complement each other and cover the

requirements of a common application area (e.g., Office suites).

These products are generally designed to supplement one another,

see [Gabl2014a].

Definition 7-2:

Product line{ XE "Product line" }: A product line groups different

variants of a product. The different products can generally be

substituted for one another and differ, for example, in the scope

of functions and price (e.g., Apple iPhones). The products in a

product line are generally defined such that each of the products

meets specific customer wishes, see [Gabl2014b].

A product line therefore encompasses a set of specific, differentiated products that all

share a common basis (referred to as commonalities). In addition to these commonalities, a

product line has a defined variable part that enables different products to be created

(referred to as the variability of the product line). Thus, different products can be created

through the defined commonalities and the variability of the product line. A product line can

encompass hardware and software parts that have been defined as commonalities or

variability and can be used in different products.

A requirements pool is a set of requirements that contains more than the set of requirements

for a specific product. It can also contain requirements that are not currently considered in

any product.

Requirements Management | Handbook | © IREB 141 | 262

Product line development differentiates between two different processes:

▪ Domain engineering: In domain engineering, the commonalities and variability of

existing product variants are identified and used to create a model of the product

line.

▪ Application engineering: Here, the product line model is adapted on a product-

specific basis, thereby creating product variants.

Definition 7-3:

Software product lines (from [ClNo2007]): “A software product line is a

set of software-intensive systems sharing a common, managed set of features

that satisfy the specific needs of a particular market segment or mission and that

are developed from a common set of core assets in a prescribed way.”

Variability{ XE "Variability" } is a term frequently encountered in the context of product lines

(see [PBL2005], [Pohl2010]). It enables the specification (and therefore the implementation)

of different products through the definition of variation points and variants, without

necessitating the creation of a separate specification for every product.

Example of commonalities and variability of a product line: The Apple iPad can be understood

as a product line. The commonalities of iPads include the housing, the displays, the processors.

Specific product variants (e.g., iPad, 64 GB, black, with Wi-Fi and 4G) are created through the

variation points "different colors", "different memory sizes", etc. The variability is described via

variation points and variants.

Variation points{ XE "Variation point" } are points (e.g., in the specification) that allow or

require the selection of specific variants.

Example of variation points: The variation points "iPad memory" and "iPad color" are variation

points that are made more specific by different variants.

Definition 7-4:

Variation point: A variation point describes where—at what point—

within a product line the requirements vary.

Variants are specific forms of artifacts (e.g., requirements or properties of the product) with

reference to a variation point.

Requirements Management | Handbook | © IREB 142 | 262

Example of variants (of a variation point): The variation point "iPhone memory" has the

following variants: 8 GB, 16 GB, 32 GB, 64 GB.

Definition 7-5:

Variant{ XE "Variant" }: Variants describe two or more possible

(permissible) forms of the requirements at a variation point (e.g.,

7-inch, 10-inch, 12-inch display).

When we refer to variability below, we are always referring to the differences between

different products—that is, the variants that are valid simultaneously in a product line (from

which different products can be derived). The changing of requirements artifacts over time

is not variability, but rather versioning (see Chapter 5).

Product line development generally differentiates between domain development and

application development (see [PBL2005]). Domain development creates the reusable

artifacts as commonalities and variability of the product line. Application development

creates individual products based on reusable artifacts.

In this case, every product contains all of the commonalities and a selection of variants. To

allow executable and consistent products to be derived within the scope of reuse,

corresponding selection and combination rules must be considered specially for selecting

variants. For this purpose, corresponding rules (dependencies) are defined in domain

development for the ability to combine and derive specific products (see Section 7.1).

Even if it is not your intention to operate product line development, the use of variability can

be an interesting option for you for the following reasons:

▪ To allow you to describe different variants for a requirement—which meet the client's

goal to different levels of quality—in your requirements specification. At the

requirements elicitation stage, the client is often still unsure whether they want

solution A (e.g., navigation with voice guidance) or solution B (e.g., navigation with

voice and image guidance). The client often wants to make their decision dependent

on the expense or the implementation time. Therefore, even in standard product

development, you sometimes have to specify different variants.

▪ To allow you to describe optional requirements within your requirements

specification, whereby these optional requirements could be considered as additional

requirements and should be evaluated before realization. The reasons for such

optional requirements are often analog to the reasons currently listed, that is,

uncertainty in the mind of the client about what they actually want.

▪ To enable you to document different installation and configuration options for an

application in a targeted way using variation points and variants. In this case, we are

not talking about a product line, but rather about variability in the sense of

configuration options.

▪ To enable a targeted reuse of requirements in similar projects.

Requirements Management | Handbook | © IREB 143 | 262

▪ To allow you to develop similar product variants that can become a specific product

variant either before implementation or on delivery or licensing.

Practical tip: In reality, we encounter this necessity to document variants as alternatives and

options as soon as a stakeholder cannot decide what they want specifically, and they want to

make their decision dependent on effort, for example. In this situation, via the mechanism of

variability, to estimate the effort you can signal to the subsequent development phases that

artifacts shown as variants must be considered separately.

7.1 Using variants of requirements

As already explained, variants always refer to variation points. A requirements document

generally contains a range of variation points and variants, even if we are not in product line

development and variability was not explicitly documented.

Variability can be documented implicitly or explicitly. In the case of implicit documentation, it

must be clear from the formulation of the requirement that different product variants are

possible.

In implicit documentation, the word "or", for example, indicates that different product

variants are possible (see Figure 27). However, the word "or" is not a reliable indicator of a

variation point, as it is also frequently used in logical conditions. Other key terms such as

"both ... and" are also generally not clear enough.

Figure 27: Example of an implicit documentation of variability

In the case of explicit documentation of variability, variation points and variants are either

integrated into the requirements specification or are created orthogonal to the requirements

artifacts (i.e., in a separate model). In the case of textual requirements, both the variation

points and the possible variants are explicitly shown in the requirement text in an integrated

documentation (Figure 28).

Requirements Management | Handbook | © IREB 144 | 262

Figure 28: Example of an integrated explicit documentation of variability

For explicit documentation of variability in an orthogonal model, the following notation can

be used, for example (see Figure 29, [PBL2005], or [Pohl2010]).

In the case of orthogonal documentation, the textual requirement remains untouched. The

variation points and variants are documented in a separate model, and the variation points

and variants are set in a relationship to the associated requirements artifacts—via a

traceability relationship, for example (see Chapter 6).

For the subsequent derivation of specific products as part of application development, when

documenting variability, you must take into account that not all variants can be combined

freely with one another. There are clear rules about which variants can be or must be

combined at a variation point, and which variants may or must be combined across variation

points or not.

Here, for example, the orthogonal model (Figure 29) indicates which rules have to be

observed when selecting the variants "Barometric altitude measurement" and "GPS-based

altitude measurement". In this example, only one of the two variants may be selected for a

specific product.

Figure 29: Example of explicit documentation of variability as an orthogonal model

Requirements Management | Handbook | © IREB 145 | 262

The following variability model (see [PBL2005]) describes the dependencies that can exist

between variation points and variants. The variability dependency describes how the

variants of a variation point can be combined with one another. The following relationship

types exist here:

▪ Alternative relationships: To express that at a variation point, either variant 1 (GPS-

based altitude measurement) or variant 2 (barometric altitude measurement) must be

selected (see Figure 29).

▪ Optional relationships: To express that a variant may be selected at a variation

point—for example, saving the altitude difference covered.

▪ Mandatory relationships: To express that a variant must be selected at a variation

point (that is, a variant is a mandatory component at this variation point)—for

example, the setting of the metric or English measuring system for height

measurement.

The relationship dependency describes how variants or variation points can be combined

with one another. The following commonly used relationship types exist here:

▪ Requires: To express, for example, that the selection of one variant requires another

variant to allow it to be realized in a specific product. To continue our example, the

variant for barometric altitude measurement requires an air pressure sensor as well

as the GPS module.

▪ Excludes: To express, for example, that one variant is excluded by the selection of

another variant as the variants exclude each other mutually for a product. Again, to

continue our example, the selection of the GPS-based altitude measurement

excludes the selection of the barometric weather forecast as, like the barometric

altitude measurement, this can only be realized via an air pressure sensor.

Figure 30: Variability model

Different products can be defined for implementation, taking account of the variability and

relationship dependencies. The point at which variability is resolved—that is, the point at

Requirements Management | Handbook | © IREB 146 | 262

which specific variants must be selected to get a specific product—is referred to as the

"binding time". According to [CHW1998], variability can be bound before development (i.e.,

before the creation of the product), on realization (i.e., at implementation), on creation of the

software (i.e., at compilation), on initial installation, or even at runtime.

The later that variants are bound to make a product more specific, the more the term

variability blurs with the term configuration. The following examples are intended to make

this clear:

▪ Binding time of a variant{ XE "Binding time of a variant" } before product realization:

This means, for example, that a customer decides on a specific product variant

before implementation. For this bound variant, a subsequent change to another

variant is no longer possible. For example, a customer wants a hiking watch with

barometric altitude measurement.

▪ Binding time of a variant during initial installation:

This means, for example, that a customer decides on a specific product variant at

installation or commissioning. The variant selected can no longer be changed at

runtime.

▪ Binding time of a variant during runtime:

This means that at any point during runtime, for example, the customer can select a

specific product variant. For example, subsequent purchase of functionality that

enables a hiker who has become lost to find their way back to their starting point

using a watch.

▪ Binding time during runtime as configuration:

Similarly to the last aspect, during runtime, a customer can, for example, make

changes to their product—for example, select the colors for the display

(monochrome/color), select the language (German, English, French, Portuguese).

We can use the option to document variation points and variants in requirements for more

than just product line development. The use of variability also helps us to document real

requirements variants for which the stakeholders have not been able to agree on a specific

requirement cleanly and to have them evaluated and estimated by the subsequent phases.

Furthermore, with variants and variation points, we can also document the configuration

settings that can be selected—which are not necessarily attributable to a product line

development—for example, changing the language, so that they are easier to understand.

In product line development in general and in requirements management in particular,

explicit documentation of variability has the following advantages [Pohl2010]:

▪ Communication:

The explicit documentation of variation points and variants supports communication

with the stakeholders as it is easy to see which variants can be selected at which

points and under which conditions.

▪ Decision support:

The explicit documentation of variability leads on the one hand to more conscious

decisions about the points at which variability should be provided. On the other hand,

Requirements Management | Handbook | © IREB 147 | 262

explicit documentation supports the use of variability to select specific variants for a

given product.

▪ Traceability:

When requirements are changed, the explicit documentation of variability—including

the relationships to the respective requirements artifacts—allows the dependent

requirement variants to be determined and adapted where necessary. The

orthogonal documentation of variability thus gives us the required traceability for

requirements variants.

7.2 Forms of explicit documentation of variants and evaluation

of these forms

As already mentioned at the beginning, in practice, variability is often formulated directly in

the requirements. These forms of explicit documentation use the concepts introduced in

Section 7.1, such as the variation point, variant, variability dependencies, relationship

dependencies, and the documentation of binding times in very different ways.

In practice, there are a number of different textual forms of presentation, and we will look at

the following representatives of these more closely in the following sections (see [Bout2011]).

▪ Textual Assignment of Requirements to Specific Products

▪ Explicit Assignment of Requirements to Specific Products

▪ Explicit Assignment of Requirements to Specific Product Features

▪ Indirect assignment of requirements to features of specific products

We will then analyze these forms of presentation in terms of the concepts for variability

presented in Section 7.1 and present additional criteria for evaluating different forms of

presentation for variability.

Definition 7-6:

Feature{ XE "Feature" }: A feature is a property or quality of a system

that is visible for the user.

7.2.1 Textual assignment of requirements to specific

products

One form of documenting variants is to document them in individual requirements with the

textual assignment of the product which the respective variant is valid for (Figure 31).

Requirements Management | Handbook | © IREB 148 | 262

Figure 31: Example of a textual assignment to specific products

In this example, we see two requirements in slightly different forms. FR_0010 states that for

the premium GPS hiking watch, a barometric altitude measurement should be used. FR_0011

states that for the basic GPS hiking watch, a GPS-based altitude measurement should be

used. In the requirement variants, the product names "premium" and "basic" describe which

variant should be used in which product. This is already a big added value for the implicit

presentation of variability in requirements—think back to our example in Figure 27.

7.2.2 Explicit assignment of requirements to specific

products

Another option for documenting variants is the explicit assignment of requirement variants

to specific products, see Figure 32.

Figure 32: Example of explicit assignment to specific products

In this example, the requirement variants are assigned to the respective product not via a

textual designation in the requirement text, but explicitly via a separate attribute. At first

glance, therefore, we can already see that each of the two requirement variants is valid only

in a specific product. Here, the assignment to products (product variants) is represented by

one product attribute in each case. The respective requirement variant is assigned to the

respective product with an "X" (e.g., FR_0010 to the product "Premium Model"). Of course,

the explicit assignment to products can take another form—for example, via a single

attribute "Product" with the respective products as values of the attribute. The specific

implementation used depends on the number of possible products and the assignment of

the variants.

Requirements Management | Handbook | © IREB 149 | 262

If specific requirement variants are valid for multiple products, for example, then the

assignment via single attributes per product is probably better than the assignment via

attribute values.

7.2.3 Explicit assignment of requirements to specific

product features

In reality, the assignment to specific products often leads to a large number of products.

This is because specific products are often defined via multiple dimensions or product

features—for example, segments (basic and premium), markets (Europe, USA, Asia),

customer groups (hikers, runners, cyclists, golfers). If we assume that all variants can be

combined with one another freely, we get 2 x 3 x 4 = 24 products.

Figure 33: Explicit assignment to specific product features

In the example (Figure 33), we show the option of explicit assignment of requirement

variants to product features—for example, to the model and customer group.

Specific products would be, for example, the combinations premium hiker and premium

runner. Requirement FR_0010 "barometric altitude measurement" is assigned to both of

these products. In contrast, for the customer group "Golfer", only GPS-based altitude

measurement is offered, for both the premium and the basic model.

Note about the assignment: Requirements FR_0011 and FR_0012 describe the same

requirement from a content perspective. As requirements artifacts, they differ solely in the

assignment to the customer group and model. The golfer watch is to have only the barometric

altitude measurement—regardless of the model—and therefore requirement FR_0011 was

duplicated because a unique assignment would not have been possible otherwise. If we had

added the value "Golfer" to the attribute "Customer Group" for FR_0011, and the value

"Premium" to the attribute "Model", FR_0011 would be valid for undesired products (e.g.,

Premium running).

Requirements Management | Handbook | © IREB 150 | 262

7.2.4 Indirect assignment of requirements to products

through features

Another option for assigning requirement variants to specific products is the assignment of

requirements to features. Here, features are special properties of the requirements that

describe the variability. In the example shown below (Figure 34), the "Leather strap" is a

feature of the associated requirement FR_0030. Here, features abstract from the total

requirement and look essentially at the property visible for the user (see Section 7.3).

In the example shown below, the requirement is assigned to a feature—for example, FR_0011

is assigned to the feature "GPS-based altitude measurement". These features can often be

found on product packaging or similar, for example, to indicate to the potential customer

which features the product has. The second table below in Figure 34 shows the assignment

of features to specific products.

For example, the premium GPS hiking watch has a barometric altitude measurement and a

leather strap, whereas the basic GPS hiking watch has a GPS-based altitude measurement

and a fabric strap. Requirements to which no feature has been assigned (e.g., FR_0070)

apply for all derived products—that is, they belong to the common requirements (or

commonalities) across all products.

Figure 34: Example assignment of requirements to features of product configurations

Requirements Management | Handbook | © IREB 151 | 262

7.2.5 Comparison of the forms of presentation

To compare the forms of presentation, we will use the aspects for reflecting variability

introduced in Section 7.1 and ask the following questions:

▪ Are variation points and variants differentiated and are they recognizable?

▪ Are dependencies (variability dependency, relationship dependency) reflected for the

permissible variant configurations and are these recognizable?

▪ Are different binding times considered for variants?

The image below (Figure 35) compares the above three aspects with the four forms of

presentation presented. The rows represent the criteria and the columns the forms of

presentation.

Figure 35: Analysis of the forms of presentation

When evaluating a specific form of presentation used for variability, the following criteria are

also relevant for practical application of the form of presentation in your projects [Bout2011]:

▪ Teachability: How easily can the chosen form of presentation be taught to non-

technical personnel?

▪ Scalability: How easily can the chosen form of presentation be used for a larger

number of products?

Requirements Management | Handbook | © IREB 152 | 262

▪ Expandability: How much effort is necessary to configure a new product from

existing and new requirement variants?

▪ Migratability: To what extent can existing requirements documentation be further

developed in the direction of the chosen form of presentation without explicit

variability information?

▪ Verifiability: To what extent can incorrect configurations in the selected form of

presentation be automatically identified?

▪ Comparability: To what extent can requirements of different products be easily

compared?

▪ Changeability: How easily can existing requirements for a single product be changed

without affecting other products in the product line?

7.3 Feature modeling

Unlike orthogonal modeling of variability (see [Pohl2010], [BLP2004]), feature modeling{ XE

"Feature modeling" }{ XE "Feature modeling" } is an integrated modeling of variability in

which both the common product features and the variants, together with their

dependencies, are described in one feature model.

The most well-known approach to feature modeling originates from [KCHN1990] and was

introduced with FODA (feature-oriented domain analysis). Over the years, the original feature

model approach has been slightly modified and developed further [KKLK1998], [KLD2002],

[SHT2006].

Analog to our definition 7-6 "Feature", the original definition according to [KCHN1990] is as

follows:

Definition 7-7:

Feature{ XE "Feature" } [KCHN1990]: "a feature is a prominent or distinctive

user-visible aspect, quality, or characteristic of a software system or system”.

7.3.1 Creating feature models

The common and variable features of a product line, including their dependencies, are

described in a feature model. A feature model can be documented in tabular or model-

based form. Feature models are typically presented as a graphical model (feature diagram).

Feature diagrams originate from and/or trees. In feature models, variation points and

variants cannot be clearly distinguished from one another visually (see Figure 36).

Depending on the perspective, features are either a parent feature or a child feature, and

therefore either a variation point or a variant. The lowest leaf elements can clearly be

identified as variants. In contrast, variation points are all non-leaf elements of the tree.

The descriptive elements of a feature diagram can be divided into the following three

categories:

Requirements Management | Handbook | © IREB 153 | 262

▪ Basic elements (see FODA [KCHN1990])

▪ Advanced elements (see [CzEi2000])

▪ Cardinality-based elements

The following model describes a metamodel for feature modeling. On the one hand, the

model shows the refinement relationship between parent and child features (basic

elements), and on the other hand, the dependency relationships between features

(advanced elements).

Figure 36: Feature metamodel

The basic elements of a feature model describe parent features and their children. The

refinement relationship describes which features must be included in the configuration of a

specific product and what must be taken into account for the selection of variable features.

Child features can have the following relationships with parent features:

▪ Mandatory: The child feature is mandatory for a specific product.

▪ Optional: The child feature can be selected for a specific product.

▪ Or: At least one of the child features in a group must be selected for the creation of a

specific product.

▪ Alternative: Exactly one of the child features in a group must be selected for the

creation of a specific product.

Using the advanced elements, you can define (similarly to in variability models) which

additional dependencies have to be taken into account when selecting features. The most

common dependency relationships are:

▪ Requires: The selection of feature A implies the selection of feature B.

▪ Excludes: Features A and B cannot be contained in the same product.

The notation used for feature models below is based on [CzEi2000]. Figure 37 describes a

feature model in which the basic elements are used. The model describes the example we

have been using, the "GPS hiking watch". The model shows the "GPS hiking watch" product

presented as the parent feature, as well as three direct child features. The feature "Weather

forecast" is an optional feature for the GPS hiking watch, expressed via the connection with

Requirements Management | Handbook | © IREB 154 | 262

the empty circle. The two features "Distance measurement" and "Altitude measurement" are

mandatory features for the GPS hiking watch. This is expressed via the relationship with the

filled circle between the parent and child features. In turn, the feature "Altitude

measurement" has refinement relationships to two further child features: "Barometric

altitude measurement" and "GPS-based altitude measurement".

These two child features are connected to the parent node via an "alternative" relationship,

which means that only one of the two features may be included in a product configuration.

"Alternative" relationship types are represented by an empty arc across all child features, of

which only one may be selected. In contrast, "or" relationships, which allow the selection of

multiple child features, are represented by a filled arc.

Figure 37: Example feature model with basic elements

Figure 37 shows a normalized form of a feature model. In principle, the single refinement

relationships "Optional" and "Mandatory" can be combined with the group refinement

relationships "Alternative" and "Or" (see the two examples in Figure 38). Even if the three

models appear different at first glance, the meaning of all the models is identical here. The

group refinement relationships "Or" and "Alternative" have a higher value here than the

single refinement relationships "Mandatory" and "Or".

In Figure 38, we can see from the two examples that the "Alternative" relationship has a

higher priority than the "Mandatory" and "Or" relationships between the parent and child

features. Here, regardless of the single parent-child relationship ("Optional" or "Mandatory"),

Requirements Management | Handbook | © IREB 155 | 262

only one of the two child features "GPS-based" or "Barometric" can be selected. The single

refinement relationship at the child feature can be ignored here. Therefore, in group

refinement relationships, we generally find only the single link to the child feature (see Figure

37).

Figure 38: Example combination of "Alternative" with "Optional" and "Mandatory" relationships

Note: The group relationship types "Alternative" and "Or" have a higher priority for the selection,

which means that the single parent-child relationships "Optional" and "Mandatory" for the

children within a group are not considered.

Requirements Management | Handbook | © IREB 156 | 262

Building on the example above, the example in Figure 39 shows how the advanced elements

(here the dependency relationships) are presented graphically in a feature model. For this

purpose, a "Requires" relationship was added to the model between the features "Weather

forecast" and "Barometric altitude measurement". This relationship type states that if the

optional feature "Weather forecast" is selected, the alternative feature "Barometric altitude

measurement" must also be selected.

The "Requires" relationship is represented by a dotted arrow with the tip on the required

feature element. The relationship type "Excludes" is represented by a dotted arrow with a

closed tip in the direction of both features.

Figure 39: Example feature model with advanced elements

Cardinality-based elements can be used to further specify the refinement relationships

between basic elements, for example by adding notations such as [min, max] to the parent-

child relationships. This allows you to express, for example, that in the event of an "Or"

selection, not all but rather a maximum of two child features may be selected (e.g., only two

of the 14 languages may be selected). For this purpose, we would add the desired cardinality

to the "Or" and "Alternative" relationship types.

Requirements Management | Handbook | © IREB 157 | 262

7.3.2 Deriving product configurations from feature models

To create specific products, the variable features of a feature model must be bound at a

certain point in time (see Section 7.1). To determine how many different products can be

derived from one feature model, the model must be "multiplied out". For this purpose,

starting from the root (that is, the uppermost parent feature), all product configurations

possible based on the refinement and dependency relationships are defined.

Example: Product configurations of a feature model

Based on the feature models introduced above, the following two examples should show which

product configurations the models permit. The example in Figure 37 allows four different

products:

- Product 1: GPS outdoor watch + weather forecast + distance measurement + altitude

measurement + barometric altitude measurement

- Product 2: GPS hiking watch + distance measurement + altitude measurement + barometric

altitude measurement

- Product 3: GPS hiking watch + weather forecast + distance measurement + altitude

measurement + GPS-based altitude measurement

- Product 4: GPS hiking watch + distance measurement + altitude measurement + GPS-based

altitude measurement

In contrast, the example in Figure 39 allows only three different products, as the "Requires"

relationship between "Weather forecast" and "Barometric altitude measurement" excludes the

combination with the "GPS-based altitude measurement"—that is, product 3.

- Product 1: GPS hiking watch + weather forecast + distance measurement + altitude

measurement + barometric altitude measurement

- Product 2: GPS hiking watch + distance measurement + altitude measurement + barometric

altitude measurement

- Product 3: GPS hiking watch + distance measurement + altitude measurement + GPS-based

altitude measurement

7.3.3 Identifying features

Features are not generally defined on a "greenfield" basis; they must be identified and

defined based on existing system documentation, requirements documents, etc. [BoHo2011]

describes a semi-automatable approach for identifying features from existing specifications

in four steps.

▪ Step 1: Search for nouns: Requirements texts are examined for nouns as the starting

point for identifying features.

▪ Step 2: Normalization: In the next step, the nouns found in step 1 are normalized—that

is, they are cleaned up from a language perspective and put into their basic form

(e.g., plural nouns are put into the singular form).

▪ Step 3: Removal of duplicates: In the third step, duplicates are removed from the list

of normalized nouns.

Requirements Management | Handbook | © IREB 158 | 262

▪ Step 4: Removal of stop words: Finally, general nouns that have nothing to do with

the product itself are removed from the list (e.g., words that deal with contractual or

general development aspects in the project) so that the result is a list of candidates

for features.

In this approach, the primary objective is to support you in identifying possible variation

points and variants from existing, textual requirements so that you can use these as a basis

for creating a feature model. This is particularly helpful if you already have documents that

you regularly reuse—but with no explicitly documented variability—but have not yet defined

a variability model or feature model for your new product line.

Example: Identifying features from a requirement text

The input for the analysis is the following requirement:

R_1020: The customer should be able to choose between a metal strap, a fabric strap, or a

leather strap as the strap for the GPS hiking watch.

 -With step 1 (search for nouns), the following nouns were identified: strap, GPS hiking watch,

customer, metal strap, fabric strap, leather strap.

- In our example, there will be no change for steps 2 and 3 because we are looking at only a

singular requirement.

- By applying step 4 (removal of stop words), the term customer would be removed from the

list. This can be identified as a stop word here because this noun does not describe a property

of the product—even though the customer is the person who is to purchase the product later.

The output of the analysis is the following feature candidates: strap, GPS hiking watch, metal

strap, fabric strap, leather strap.

Based on these noun lists, an expert can then usually quickly identify potential features or

variation points and variants. However, one significant disadvantage of this procedure is that

in particular, variation points that are not explicitly mentioned in the text cannot be

identified. Furthermore, the correct relationship types between the parent and child features

generally have to be analyzed from the requirement itself. Variation points (i.e., parent

features) and the relationships to the child features can often be identified if the technical

expert insistently asks about the reason (i.e., the "why") for the different variants. For

example, in response to the question of why the watch sometimes has a fabric strap,

sometimes a leather strap, and sometimes a metal strap, the answer is that different

customers prefer different straps.

Accordingly, the strap is the corresponding variation point (or rather, the parent feature) and

the specific types of strap are the variants (or rather, the child features).

7.3.4 Tool support

If you want to document variability explicitly, this is difficult to do without using special tools.

Of course, you can create feature models as and/or trees with existing modeling tools—

however, these generally do not support any relationship types for variability or the

derivation of product configurations.

Requirements Management | Handbook | © IREB 159 | 262

However, there are a number of tools on the market that allow you to:

▪ Create feature models

▪ Create product configurations

▪ Check product configurations for reliability

These tools generally have interfaces to other modeling or requirements management tools

in which the actual development artifacts (e.g., requirements) are located. This enables you

to place variability models or feature models in relationships with other development

artifacts so that you can establish the traceability between the different models.

7.4 Content for the requirements management plan

Where necessary, the aspects of variability modeling presented in this chapter can be added

to the requirements management plan if you want to either represent variants or even

develop a true product line. In your requirements management plan, define how you want to

document variability—that is, variation points, variants, and their dependencies—in your

requirements. You can do this for example in text form, as an orthogonal model, or as a

feature model (e.g., Figure 39). What is important here is that you define explicitly how

variability is to be documented (e.g., using feature models) so that you can discuss and

agree this with all stakeholders involved before the project starts.

7.5 Literature for further reading

[Bout2011] E. Boutkova: Experience with Variability Management in Requirement

Specifications. In: D.E. Almeida, T. Kishi, C. Schwanninger, I. John, and K.

Schmid (eds): Software Product Lines – 15th International Conference (SPLC),

München, 2013, pp. 303-312.

[BoHo2011] E. Boutkova and F. Houdek: Semi-automatic identification of features in

requirement specifications. In: Proceedings of the 19th International

Requirements Engineering Conference, Trento, Italy, September 2011.

[BLP2004] Bühne, S.; Lauenroth, K.; Pohl, K.: Why is it not Sufficient to Model

Requirements Variability with Feature Models. In: Aoyama, M.; Houdek, F.;

Shigematsu, T. (eds) Proceedings of Workshop: Automotive Requirements

Engineering (AURE04). IEEE Computer Society Press, Los Alamitos 2004.

[CHW1998] J. Coplien, D. Hoffmann, and D. Weiss: Commonality and Variability in Software

Engineering. In: IEEE Software, Volume 15, Issue 6, 1998.

[ClNo2007] P. Clements and L. Northrop: Software Product Lines: Practices and Patterns.

Addison Wesley, Boston, 6th Edition, 2007.

[CzEi2000] K. Czarnecki and U.W. Eisenecker: Generative Programming: Methods, Tools,

and Applications. Addison Wesley, 2000.

Requirements Management | Handbook | © IREB 160 | 262

[KCHN1990] C. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson: Feature-Oriented

Domain Analysis (FODA) - Feasibility Study. Software Engineering Institute,

1990.

[KKLK1998] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin and M. Huh, "FORM: A Feature-Oriented

Reuse Method with Domain-Specific Reference Architectures," Annals of

Software Engineering. vol. 5, 1998, pp. 143–168.

[KLD2002] K. Kang, J. Lee, P. Donohoe: Feature-Oriented Product Line Engineering. IEEE

Software 19(4): 58-65 (2002).

[PBL2005] K. Pohl, G. Böckle, F. van der Linden: Software Product Line Engineering -

Foundations, Principles, and Techniques. Springer, 2005.

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.

Springer, 2010.

[SHT2006] P.-Y. Schobbens, P. Heymans, J.C. Trigaux: Feature Diagrams: A Survey and a

Formal Semantics. In: Proceedings of the 14th International Requirements

Engineering Conference (RE’06), September 2006.

Requirements Management | Handbook | © IREB 161 | 262

8 Reporting in requirements management

8.1 The goals and benefits of reporting in requirements

management

Reports are part of project and organizational controlling. They serve to collect information

about projects or organizational units and to prepare this information appropriately for

certain target groups in order to meet their information needs.

Reporting{ XE "Reporting" } is defined, for example, as "the creation and dissemination of

cross-functional reports in the sense of an organized compilation of messages exclusively

for management" [Zieg1998]. Another definition emphasizes the preparation and goals of

the reporting system: "It can be understood as all persons, facilities, regulations, data and

processes used to create and distribute reports. Thereby, reports represent summarized

information under an overarching goal, an information purpose." [Küpp2005].

Reports are the specific, technical implementation of views, thus "an extract from an artifact

that contains only the content that is currently of interest" (see Chapter 3).

You can use reports to find out how much work has already been completed in a project and

the quality of this work. This information is used for project controlling and quality assurance.

Specifically, the information supports:

▪ Knowledge about the status of the project progress

▪ Transparency about the project progress for management and the team itself

▪ Early detection of deviations of the actual progress from the target progress

▪ The ability to make reliable, important management decisions as early as possible

(e.g., whether the delivery date has to be postponed and if so, by how much)

▪ A reduced view of the relevant data that focuses on the essentials

Definition 8-1:

Reporting in requirements management is the collection, evaluation,

and presentation of information about requirements or the

Requirements Engineering process. The information contained in

reports serves not only as pure information but also as a basis for

project decisions and for controlling the Requirements Engineering

process.

Requirements Management | Handbook | © IREB 162 | 262

Definition 8-2:

A report is a document that combines one or more views for a

specific stakeholder and purpose.

In connection with requirements management, in this book we are interested primarily in the

contribution the requirements manager makes to reporting. In particular, we demonstrate

how requirements-based project controlling can work—that is, observing the project

progress using the information in the requirements management tool.

Of course, the prerequisite for creating such a report is that the requirements management

tool contains the corresponding information. This information is usually defined in the form

of attributes that have precisely the value list required for reporting.

Therefore, when you create the attribute schema, you have to think about the reports that

are to be created. Ultimately, the purpose of the attributes lies not in their collection but in

their evaluation.

Both product and process key figures are of interest for reporting. In this context, key figures

are dimensions for both the scope and quality of the product development results that have

already arisen and for the status and quality of the development process: "The purpose of

the Measurement Process is to collect, analyze, and report data relating to the products

developed and processes implemented within the organization, to support effective

management of the processes, and to objectively demonstrate the quality of the products.“

[ISO29148].

One of the difficulties of reporting is that the people who are responsible for entering the

required information in the requirements management tool are not the same people who use

this information. The result is that not only do the project team members have little intrinsic

motivation for entering the data—because they themselves do not benefit from it—but also

that they may even want to sugarcoat the true status of the project to the controlling

instance.

!

The goals and stakeholders of reporting

The primary goal of the further development of online banking is to introduce

the new release properly and without any malfunctions. At an early stage

(with at least three weeks lead time), a number of persons and parties

affected by the development must be informed about which functionality is

being introduced at which point in time. These persons and parties include

management, the data center, the service representatives in the call center,

and the employees in the branches of the bank. At the time promised, the

respective functionality must work without any errors.

What is important in reporting, therefore, is a status tracking for the next

release. This status tracking must detect deviations from the schedule at an

Requirements Management | Handbook | © IREB 163 | 262

early stage and also ensure that any errors that may have been implemented

are discovered and eliminated by the time of delivery.

Here, delivery reliability and quality are more important than costs and the

scope of delivery. If there were any doubt about a functionality, it would be

omitted rather than being delivered with errors. Furthermore, additional

costs in the form of developer days would be invested rather than

postponing the deadline.

At the same time, Internal Controlling, which controls the flow of costs

across all projects, is keeping an eye on this project and wants to know what

costs are incurred each month. They are particularly interested in whether

the budget granted has been or will be exceeded or not consumed in its

entirety.

The project manager is the person who evaluates the status and quality of

the project using the reports and then communicates the conclusions he

draws from the reports to the other stakeholders. The project manager

creates an extensive status report for the Controlling department, for their

own department head, and for the project team.

For the remaining stakeholders, the project manager has set up a newsletter

that provides brief information on a weekly basis about the planned release

date and the functionality that the release will probably contain. This is a

selective extract of the information contained in the extensive status report.

The data for these reports, which refer to the requirements and the

Requirements Engineering process, comes from the requirements

management tool that manages the status of the requirements over their

entire lifecycle. Therefore, for the project manager, Peter Reber is the person

who delivers the requirements-based content for the status report. Further

data comes from development and from quality assurance, and these

functions each use different tools for managing their content and for

creating status information.

8.2 Establishing a reporting system in requirements management

8.2.1 Interfaces

Requirements management is closely integrated with project management, product

management, and quality management. Consequently, these interfaces also exist within the

reporting system. Therefore, it makes sense to coordinate the reporting of these three areas

and their data. Project management will certainly be one of the most important recipients of

reporting on requirements management but quality management must also be considered.

In some companies, where applicable, it may even make sense to generate reports to cover

both requirements management and quality management. This should be checked on an

individual basis.

Requirements Management | Handbook | © IREB 164 | 262

8.2.2 Contents of a report

Reports can be sent informally in an email text. However, there are often templates to

ensure that every report has the same structure. This makes reports easy and efficient to

read and create: the same information is always available in the same place on the page. For

the author, it is particularly practical if the report can be generated automatically from the

tool in which the necessary information is managed —that is, it is practical if the

requirements management tool can create status reports.

Reports are important project documents and must therefore be stored such that they can

be traced. Here, all rules of good document management apply. Ideally, the report files

should have meaningful and unique names that also contain the date of creation of the

report in a form that, where alphanumeric sorting is used, leads to files being sorted in

chronological order. A good example of a file name is status_20140817.docx. In some project

crises, conflicts, and disputes, the reports represent valuable information about the progress

of the project and the flow of information—that is, who has informed who about what and

when did they do so?

A report not only contains one or more views and key figures—it also documents its own

creation and approval process. The report must also clearly state what it refers to—for

example, the specific project and reporting period.

Sometimes there are different reports about the same content but with a different purpose,

with different titles that provide information about the target group and purpose—for

example, the status report or the management summary.

Of course, every type of report contains different information, a different view. A report

should contain only the information that the recipient needs to cover their information need.

8.2.2.1 Key figures in requirements management

Key figures or measures are an important part of reports.

"You can’t control what you can’t measure" is a statement by DeMarco [DeMa1982] that is

often quoted. Twenty-seven years later [DeMa2009], DeMarco discusses that not every

project needs the same level of control, that not everything can be controlled, that control is

not everything and not the most important management task. According to DeMarco,

management of human resources is also important, for example. That may be correct, but it

is still true that measurement simplifies control. Specific figures and hard facts supplement

or correct our intuitive impressions in an engineering-based processing and management of

a project. This also applies in particular to the management of requirements and changes to

these requirements, that is, requirements management.

Ebert [Eber2012] defines a measure as:

▪ "(1) A formal, precise, reproducible, objective assignment of a number or symbol to an

object to characterize a specific characteristic.

▪ (2) Mathematical: Figure M of an empirical system C and its relations R in a numerical

system M.

Requirements Management | Handbook | © IREB 165 | 262

▪ (3) The use (collection, analysis, evaluation) of a measure. Examples: Measure for a

product (for example, errors, duration, deviation from plan) or a process (for example,

error costs, efficiency, effectiveness)".

There is a difference between product key figures and process key figures.

Definition 8-3:

The product key figure{ XE "Product key figure" } measures the

scope or quality of the product to be created at a specific point

in time.

As we are interested in requirements here, we measure the scope and quality of the product

based on requirements: for example, "Which requirements are planned for the next release?"

or "How many requirements are ready for delivery?".

Definition 8-4:

The process key figure{ XE "Process key figure" } measures the

progress or quality of the work process.

Here too, we are interested in particular in the requirements perspective, that is, the

progress of the development process in terms of the requirements ("How many

requirements have already been specified completely?") and particularly the progress of the

Requirements Engineering process ("What proportion of the requirements currently known

have already been checked?").

Ebert [Eber2012] differentiates between three types of measures in Requirements

Engineering:

▪ "Progress (e.g., the number of requirements that have been specified, realized, or

tested)

▪ Requirement quality (e.g., number of errors in the requirements documents)

▪ Model semantics (e.g., degree of coverage of the requirements by the analysis

model)"

The key figure type "model semantics" could also be called the "traceability dimension", as it

measures the completeness of traceability between two different requirements

specifications. If we consider the requirements to be part of the product, this is also a

product key figure.

ISO 29148 ([ISO29148]) makes the following statement about requirements key figures:

"Requirements engineering as a discipline benefits from measuring requirements in both the

process and product contexts. More than one measure may be needed to provide the insight

Requirements Management | Handbook | © IREB 166 | 262

into the information needs for the requirements. Practice has consistently proven various

useful measures, including:

Requirements volatility – In the process context, requirements volatility can indicate an

organization‘s Requirements Engineering process will not converge a collection of

requirements into a well-formed set. In the product context, a high volatility value can indicate

risk early by stakeholders failing to reach consensus on system requirements, putting

significant risk on subsequent activities in the life cycle.

Other useful requirements measures include:

▪ Requirements trends

▪ Requirements change rate and backlog

▪ Requirements verification

▪ Requirements validation and

▪ TBD and TBR closure progress per plan."

TBD stands for "to be determined" and TBR for "to be resolved" or "to be revised", thereby

identifying open items directly in the requirements specification.

Various authors recommend the following as requirements-based key figures for tracking

the status of the project:

▪ Status of the requirements, which can be represented over the course of time—for

example, the number or proportion of requirements that have been agreed,

developed, or completed, see Figure 42

▪ Change rate = proportion of requirements that have changed in a period, measured

over the total scope of the project; measures the stability of the project and its

requirements

▪ Error rate = number of errors per unit (e.g., errors per 1,000 requirements); measures

the result of the requirements inspection or software test

▪ Degree of attribution of the requirements: this key figure measures whether the

requirement attributes have been completely filled; the target value is 100%

▪ Degree of linking between different artifacts

▪ Requirements coverage: percentage of all requirements that have been validated by

at least one test case [SpLi2007]

▪ Test coverage: criterion for measuring the completeness of the tests executed

[SpLi2007]

▪ Velocity = number of requirements that can be implemented in one iteration in the

case of iterative development

▪ Throughput duration of a change request from application to approval

To determine the key figures above, we need condensed views that calculate totals and

subtotals or percentage proportions.

Requirements Management | Handbook | © IREB 167 | 262

8.2.2.2 Standard contents of reports

The standard contents of regular reports in requirements management—for example,

reports to project management—are the following:

Project name: The report must specify the project to which it refers. (If the report is about an

organizational unit, for example a department, the name of the department is displayed here

instead of a project name.)

Date of report creation: The contents presented in the report change daily or even hourly. It

is therefore important to specify when the data was extracted, that is, the information status

that the report is based on.

Version number: If there are several versions of a report, for example because someone

added something, the new version must have a new version number to ensure that the

report is unique and to ensure better traceability of changes.

Reporting period: Reports can refer to days, weeks, months, years, or any other time

interval. Weekly and monthly reports are the most common, but in critical project phases,

reports can also be generated on a daily or half-day basis. Of course, when interpreting the

contents of the report, it makes a difference whether it relates to what was achieved within a

week or a month.

Creator and recipient(s): A report has a creator (author) and recipient(s) (distribution list).

The recipients can also be distinguished between those who receive it for information only

and those who have to approve it. The names of these persons are usually mentioned on the

report and are thus documented.

Release status: If the report requires a release, this status should be noted here. The report

may contain different contents in different release statuses. Overall status: Right at the

beginning of the report, a reader in a hurry wants an overview of how critical the project is.

Busy managers in particular only read the report if the project is critical. Reports on projects

that are running according to plan do not contain any informational value for the supervisor,

as their support is not required. Traffic light scales with the following meanings for the colors

are popular:

▪ Green: The project is running according to plan. No acute problem, no need for

action.

▪ Yellow: The project is not running according to plan. The project team can probably

solve the problems themselves. Action must be taken, however.

▪ Red: The project is at risk and the project team cannot or can no longer solve the

problems themselves. Urgent support is required from above or outside the project,

as well as a decision about, for example, postponing the deadline, increasing the

budget, creating a task force.

Statuses can also be specified for individual parts of a project (e.g., phases or work

packages) or for individual aspects (e.g., costs, delivery reliability, progress, quality, risk).

What is also interesting, particularly just before the delivery deadline, is which of the planned

requirements are already ready for delivery and which are not. Here you can also document

which milestone has already been reached.

Requirements Management | Handbook | © IREB 168 | 262

Earned value analysis: The earned value analysis (EVA) is described in more detail in Annex

C. As the basis for the earned value analysis, the report specifies the following key figures for

the project:

▪ Budget (budget at completion/planned costs, PC): The budget available for the entire

project. The budget is specified in € (or another currency) or in time units (person

days or person months). Both details can be specified here, or you can consistently

use only one of the two key figures.

▪ Planned degree of completion: Here, you specify in % the proportion of the project

that should be completed at the current point in time. The figure is calculated as the

quotient of the planned work volume and the total volume of the project. Here, too,

you can use a currency or a time unit. Of course, the work volume and total volume

must be measured in the same unit.

▪ Degree of completion: Here, you specify in % the proportion of the project that is

actually completed at the current point in time.

▪ Costs or effort to date: Here, you specify the costs that have already arisen, in € or in

a time unit.

▪ Cost index: This is the quotient of the costs to date and the total budget of the

project in %.

These key figures tell you what part of the result has already been completed and what

proportion of the budget has been used to do so. You can therefore calculate whether the

project is on schedule and whether work is being performed efficiently—that is, whether the

result created matches the budget consumed. Based on these figures, forecasts can be

created about whether the project can be completed on time and within budget. This

provides the status of the project. For a detailed description of the earned value analysis,

see Annex C. These key figures can also be broken down by work packages or requirements.

However, this is usually not necessary.

Further key figures: Further key figures can describe the quality of the project results,

including the requirements—for example, the number of errors found in the inspection, or the

proportion of requirements for which not all attributes have been maintained yet. Further

quality assurance results are also interesting—for example, the test coverage, density of

errors in the code, and the number of errors or serious errors that are still open. Further

examples for key figures can be found in Section 8.2.1.

Of course, the data required for the reports must be available in the requirements

information model (see Chapter 2) and in the attribute schema (see Chapter 3).

Evaluation and forecasts: In addition to the figures themselves, the report always requires

an evaluation by the creator of the report. The recipients cannot necessarily judge whether a

specific value is acceptable or not for this particular project or for the current point in time.

Therefore, this evaluation is a significant part of the report.

Forecasts are part of this evaluation. The author of a report should create forecasts so that

every reader does not have to create the forecasts and draw conclusions themselves. For

example, if 25% of the budget has been consumed for a degree of completion of 20% of the

work volume, this requires a justification which is in turn important for a forecast. Is the 5%

Requirements Management | Handbook | © IREB 169 | 262

overspend due to a one-time issue—for example, unexpected costs that occurred at the

beginning and since then, work has been performed according to plan? In which case, can

we hope for the rest of the project that 10% of the budget leads to a 10% degree of

completion, meaning that at the end, the costs will be 105% of the budget? However, if the

cost overspend can be attributed to the fact that the cost estimation was incorrect, or

unforeseen problems are making the work more difficult, there is a fear that this will also

apply for the rest of the project. The remaining 80% of the project will then consume a

further 100% of the budget, meaning that at the end, the project will cost 125% of the

planned budget. In the case of a time delay, the cause can also indicate whether the time

can be recovered or whether the final deadline has to be postponed and by how much.

Special events: The figures do not indicate whether anything special has occurred during the

reporting period. Special events can be deviations from the plan, risks that have occurred, or

extensive change requests. They should be specified here in text form.

Open items: What is still open? What has to be done next, by whom, and by when? The

information here is usually only the next tasks, unscheduled tasks, and decisions that have to

be taken urgently.

Graphical presentations: In addition to the dry figures, graphical presentations that give an

overview at a glance are popular. Some examples are given below.

A colored presentation of the status as a traffic light: In particular, if the status of multiple

elements (e.g., work packages) is presented, as shown in Figure 40, a graphical traffic light

gives a better overview. Compare the tabular part (a) of Figure 40 with the traffic light

presentation (b).

Figure 40: Status of the entire project and the requirements as a table (a) and a

traffic light (b)

Requirements Management | Handbook | © IREB 170 | 262

Time diagrams for the costs, the degree of completion, the milestone deadlines, and other

project key figures: If we apply these key figures over time, as shown in Figure 41, we get a

good overview of their development over the period. In turn, this overview allows us to

create forecasts about how the project will develop in the future. A project in which 2% is

continuously processed each week will probably—if there are no radical changes—continue

to progress only 2% per week, despite all hopes for a miracle. If, after the thirteenth project

week, a 26% degree of completion has been achieved with 28% of the budget, the project

has consumed too much of the budget.

Figure 41: Time diagram for the degree of completion and cost index of a project

Figure 42 shows the development of the status of the requirements over time. This type of

graphic can be created very easily in a spreadsheet program if the data is available in tabular

form. There is a lot of information in this chart: from the total number of requirements (=

overall height of the bar), we can see that in this project, a lot of requirements were elicited in

the first weeks, and only a few new requirements were added later. There is therefore very

little "requirements creep" (= a creeping increase in the scope of the project). Agreement of

the requirements began in calendar week 12 and the required decisions were then taken

quickly within a few weeks. Overall, this diagram shows a very satisfactory project

progression.

Requirements Management | Handbook | © IREB 171 | 262

Figure 42: Time diagram for the status of the requirements. The horizontal x axis shows the time

in calendar weeks, and the vertical y axis shows the number of requirements. It would also be

feasible to show the effort on the y axis, that is, weight every requirement with its estimated

effort.

!

Contents of the status reports

As already stated, our case study is to have two reports: the status report to

Controlling, the department head, and the project team, and an abbreviated

form for the newsletter to the remaining project stakeholders.

The status report is to be created weekly, and, just before the delivery

deadline for the release, daily if necessary. The most important project

variables are:

▪ Overall status of the release: this is yellow as soon as one of the

requirements probably cannot be delivered; it is set to red if

indispensable requirements cannot be delivered and the go live

deadline therefore has to be postponed

▪ Costs already consumed in the release in € and cost index in %

▪ Degree of completion with respect to the next planned release in %,

also compared with the planned degree of completion

▪ Status of the requirements, presented as a bar chart over time, as

shown in Figure 42

▪ Number of open errors as a measure for the quality, applied over time

▪ Forecasts about delivery reliability and the probable delivery deadline

In addition, the report of course also contains the organizational information,

such as the project name, date, version number, reporting period, creator,

and recipients.

Requirements Management | Handbook | © IREB 172 | 262

In addition to the organizational data, the newsletter contains the status of

the release, the planned release deadline, the degree of completion

compared with the planned degree of completion, and the forecast for the

delivery deadline.

Practical tip: Less is more! Keep the number of reports to be created and their contents as low

as possible. Every time a new field is created, this creates work for the author and the recipients.

And too much unnecessary information can even cloud the view of the essentials.

8.2.3 Tips for Developing and Applying Reporting

There are some practical challenges in the development and application of (requirements-

based) reporting:

▪ Focusing on the essentials: Even when the stakeholders and the benefits of reporting

are known, the art is to focus on the essentials. The report definition process in

Section 8.2.4 and the GQM method, which we describe in Section 8.2.5, help here.

▪ Reconciliation: The information required for the report must be provided in the

requirements information model (see Chapter 2) and the attribute schema (see

Chapter 3). As it is difficult to retrospectively change the information model and

attribute schema, and the introduction of a new attribute requires extensive content

maintenance, the requirements management data models should be clarified at an

early stage, even before the project or work begins. It is helpful to use reference

models that have already been coordinated with each other.

▪ Data collection: The people who have to collect the data are not the same people

who need the information and create or read the report. The data collectors therefore

have no inherent motivation to enter the data. It is therefore even more important

that data collection is integrated into daily work processes well and that it is clear who

has to enter which data and when.

▪ Data quality: The mere presence of attributes does not necessarily mean that all

content is maintained, up to date, and correct. While it does not make sense for an

efficient work process to introduce too many mandatory fields, especially since some

information is not yet available when a requirement is created, for reporting, it would

be important that the attributes are maintained. Missing content leads to incomplete

information in the reports. In Section 8.2.7, we describe how you can ensure the data

quality or consider missing data in the report.

8.2.4 The report definition process

Defining requirements-based reports requires a comparison with the attribute schema (see

Chapter 3). The requirements manager is responsible for this task. If the requirements

manager cannot conduct the comparison themselves, they delegate this task to a suitable

person.

Requirements Management | Handbook | © IREB 173 | 262

According to ISO 15288 ([ISO15288], 6.3.7.3 a) 1) to 4)), a measurement and reporting system

is defined in these steps:

1. Description of characteristics of the organization relevant to the measurement

2. Identification and prioritization of information needs

3. Selection and documentation of key figures that meet these information needs

4. Definition of procedures for data collection, analysis, and reporting

In the following sections we split these four steps up further.

Characteristics of the Organization

Characteristics of the organization that are relevant for reporting are, in particular, the

organizational chart and the requirements information model, including the attribute

schema. The characteristics of the project are also relevant here: scope, schedule,

stakeholders.

Identifying Information Needs: Identification of Report Recipients

All stakeholders of the project are potential report recipients. However, report recipients can

also be people who are not (yet) on the stakeholder list.

Identifying Information Needs: Determining Goals and/or Risks in the Project

The report recipients want to use the report to achieve their information goals. These goals

must now be determined, at best by the report recipients themselves. The goals are often to

reduce project risks or to learn about the occurrence of the risk in time to initiate actions.

Examples of goals or risks in product development are:

- The planned delivery time or milestone deadlines must be adhered to (goal).

- The budget must be adhered to (goal).

- Important required functions cannot be provided (risk).

- The budget for eliciting the different stakeholder requirements will not be sufficient (risk).

- The required quality cannot be delivered (risk).

Prioritizing Information Needs

The main goal of the project is still product development and not reporting. Therefore, the

report must focus on the most important needs of the most important report recipients.

It is easy to imagine creating a tailor-made, optimized report for the most important report

recipients and sending less important report recipients the same report or an extract

thereof, even if this is not optimal and only just sufficient for their goals.

When prioritizing the report recipients and their information needs, important criteria include

the position of the report recipient in the hierarchy and the criticality of the success of the

information need—that is, how important it is for project success that this information need

is met.

Requirements Management | Handbook | © IREB 174 | 262

Selecting Key Figures, Defining Report Content

In Section 8.2.2.1 and Section 8.2.2.2, we proposed some key figures and report content that

are recommended in literature and often collected. These can serve as examples and an

(incomplete) checklist. However, the content that should actually be included in a specific

report depends on the information need and other factors. The GQM method (see Section

8.2.5) describes how you get from the information need to the key figure that supports it.

There are two important criteria for selecting the report content and key figures:

1. The information needs are fulfilled.

2. The data is easily available.

With regard to data availability, ISO 29148 ([ISO29148]) advises focusing on those data and

key figures that are collected anyway, and to use these as a checklist for the data to be

collected: “It is good practice to choose measures for which data are readily available through

the life cycle. The data collection can then be integrated into the requirements related

processes to obtain the data and insight on a regular basis as the Requirements Engineering

proceeds. It is also good practice to review the analyzed requirements related measures

collectively, looking for predictive trends and projections that can aid risk management.”

Both criteria (information need and data availability) must be weighed up against one

another. The report must contain only data that meets an existing information need. Of

course, it does not make sense to include data in a report simply because it is easily available

if nobody actually needs this data. Conversely, it can be useful not to include key figures in a

report, even though they would be useful, if collecting them is difficult and requires a

disproportionate amount of effort.

When selecting the data to be reported, start with the data that you already have and check

whether it fulfills any information needs. Then check whether every information need is

fulfilled and if not, which data may have to be collected in addition.

It is feasible that in different project phases, different information needs exist or different

data is or should be available.

Defining Procedures for Data Collection, Analysis, and Reporting

Data collection should ideally take place during normal project work, should be integrated in

the normal work processes, and should not cause any additional effort. We will look at the

procedure for collecting data later on in Section 8.2.6.

For the procedure for data analysis and reporting, you have to clarify the following:

▪ Generation cycle: How often must the report be created? There may be specific

points in time at which the status of the project must be determined, for example, the

milestones.

▪ Tools: What tools are used to create the report?

▪ Report creator: Who creates the report? In principle, multiple persons involved in the

requirements management process can provide content for a report, in the same way

that multiple persons involved in the process can receive reports.

Requirements Management | Handbook | © IREB 175 | 262

▪ Report form: In what form will the report be created (format and template) and how

will it be distributed?

Reporting can be implemented manually by a defined report creator, by the requirements

manager, or automatically by a requirements management tool. The type of implementation

depends on the maturity of the tool environment, the extent to which requirements

management has been established in the company, and on the importance of reporting in

the company. The automatic generation of reports has a special role particularly for

extensive reports and reports that have to be generated regularly and for extensive data.

This is because automatic generation significantly reduces the effort involved in generating

the reports and the probability of errors in the reports.

As well as being influenced by the tools, the presentation of the report is also influenced by

the standards, customs, and expectations that prevail in the respective company.

8.2.5 Goal, question, metric method

In reporting, the "goal, question, metric{ XE "Goal, question, metric" }" (GQM) method

[BaWe1984], [Basi1992], [BCR] is one potential method for ensuring that no unnecessary, or,

to be more precise, only goal-oriented key figures are defined for reports or report content.

GQM is a systematic procedure for identifying such key figures. A suitable key figure is

identified by answering the following questions:

▪ Which goal is to be achieved by the measurement? (Goal)

▪ What should be measured and which questions should the measurement answer?

(Question)

▪ Which key figure(s) can describe the necessary characteristics? (Metric)

When applying the GQM method to reporting, we start with the report recipients and their

information need (= goal). Which question should the report answer and which key figure is

suitable for this?

!

GQM for delivery reliability

Goal: In our example project, we are particularly interested in the delivery

reliability.

Question: When will the new release go live?

Metric: The probable delivery deadline is the key figure that is particularly

relevant here. It is determined via the earned value analysis, which in turn

requires the collection of multiple further key figures.

It is also feasible that one information need leads to multiple questions, or that multiple key

figures are needed to answer one question.

If, for example, the goal is a high level of customer satisfaction, customer satisfaction arises

not through one single factor, but probably through a mix of hard and soft factors. Figure 43

shows a more complex example in which the key figures initially derived are in turn

interpreted as a goal and analyzed further.

Requirements Management | Handbook | © IREB 176 | 262

Figure 43: Example for the application of the GQM method

8.2.6 Data collection

The collection of data for reporting covers the following tasks ([ISO15288], 6.3.7.3 b)):

1. Integrate procedures for data creation, collection, analysis, and reporting into the

relevant processes: the description of the work processes must include a definition of

who collects which data and when for the report. This applies, amongst other things,

for the Requirements Engineering process (see Chapter 9). The earliest point in time

for data collection is of course when the data arises—for example, effort estimations

or actual efforts. It may, however, also be the case that at certain points in time, data

is imported or aggregated from another system because it already exists there. The

time for data analysis and reporting must also be defined to ensure that the

stakeholders receive up-to-date and correct information regularly. The check of the

data quality, which, for requirements-based data, is the responsibility of the

requirements manager, must also be planned. Here, the requirements manager

checks the data for completeness, plausibility, and quality.

2. Collect, save, and check data: as planned under point (1), the data is then collected

and the quality of the data is checked. If applicable, the requirements manager can or

should ensure that this actually happens. If the quality is not correct, the requirements

Requirements Management | Handbook | © IREB 177 | 262

manager ensures that the knowledge owners enter their knowledge in the

requirements management tool and thus make it available for reporting.

3. Analyze data and create information: as planned under point (1), at the defined points

in time, the views and reports are created.

4. Document results and communicate them to the users: the reports are documented

(e.g., stored as a file with a timestamp) and distributed to the stakeholders concerned.

The documentation can be helpful if you want to track the progression of the project

status and the level of knowledge at a later point in time.

8.2.7 Checking the data quality

The report recipient receives the available information in the form of reports which they can

then use to derive actions and/or decisions. The data quality should therefore be correct,

because otherwise, incorrect data quality could result in incorrect decisions being taken. The

persons involved should exchange information to increase the quality of reporting. Both the

report creator and the report recipient are responsible for this information exchange.

"Information and reporting should not take place exclusively from employees to the project

manager. The project manager should also make his knowledge and his information

available to the employees involved. Lack of information leads not only to uncoordinated

activities, but also has a negative effect on employee motivation" [KuSt2001].

The requirements manager is responsible for checking the data quality. Two criteria must be

investigated: completeness and quality.

It is relatively easy to check the completeness of the data. For example, if all the attributes

with the name "Effort" have been entered, this data is complete. If filtering or sorting by this

attribute leads to the discovery of requirements for which this attribute is empty, the data is

incomplete. It may of course be correct for individual items of data to be missing. For

example, a requirement that is still being clarified cannot contain a value in the field "Actual

effort" because no effort has been spent yet. Alternatively, when determining the degree of

completion of the current release, the status of the requirements that have been deferred

for later releases is completely irrelevant. Therefore, criteria must be defined for the

completeness of the data.

It is more difficult to evaluate the quality of the content. Criteria must also be defined for

this. Sometimes, these criteria are already in the attribute schema which, for example, can

prohibit implausible or contradictory attribute combinations (see Chapter 3). In this case, it is

not possible to enter implausible data. However, it is sometimes not technically feasible to

prevent such attribute combinations on collection. You then have to identify them using

suitable views.

If instances of missing or implausible data are found, the question arises as to who should or

can correct this data and by when it must be corrected. In principle, the attribute owner is

responsible for either maintaining the content of the attributes themselves, or for ensuring

that someone else does so. The urgency depends on the urgency of the information need. A

list of data can be entered retrospectively quite quickly; alternatively, the instruction can be

given that the next time a requirement is edited, the data is to be corrected.

Requirements Management | Handbook | © IREB 178 | 262

8.3 The risks and problems of using reporting

In practice, there are practical difficulties in gathering and evaluating data that result in

reports not adequately reflecting reality. As reports are intended to lead to important

management decisions, an incomplete or even deliberately embellished report can have far-

reaching consequences.

Evaluation of data: condensed representation of reality

A report is always a highly condensed model of reality in which similar things are grouped

into categories and insignificant details are omitted. It is very difficult to do this in such a way

that any future question can be answered well at any time.

This is why the superficiality of a report must always be taken into account. In particular, it is

important to avoid drawing false conclusions from the data available. For example, a report

that shows 99% traceability for all project requirements does not yet allow a statement on

the progress of the project or the quality of the relationships. Requirements that have not yet

been linked could be the most important or most time-consuming requirements that

contribute significantly to the success of a project. When reducing the complexity of key

figures, you should always be aware of this problem. It is often the case that only very rough

statements and conclusions are possible.

If really reliable data is required, the question must be asked correctly and the correct key

figure evaluated. The GQM method (see Section 8.2.5) can support the derivation of the

correct key figure. Further data may have to be collected.

Data quality

Missing data is usually easy to detect. It is not as easy to evaluate the quality of the data:

does the data correspond to reality? Is it up to date? Does it measure exactly what it should,

for example, does the attribute "Effort" only measure the implementation effort, although

the test effort should also be taken into account? Is the criticality actually the result of an

expert survey or has it been set provisionally?

Undiscovered but also known shortcomings in data quality lead to the report not correctly

reflecting the reality of the project. It is difficult to make the right management decisions

based on this incorrect data. And even if the lack of data quality is known, decisions are

difficult to make.

Poor data quality often results from the fact that the parties involved neglect data

maintenance because they themselves have little benefit from it. Conversely, sometimes

they may even be interested in embellishing the data, or at least in saving time on data

maintenance by not performing careful analyses and instead hastily entering data that

seems plausible.

However, poor data quality can also result from the fact that not everyone involved has the

same vision. In agile development (see Chapter 10), the "definition of done" is an important

topic of discussion. The point at which a requirement is considered completed must be

clearly defined. Possible criteria for the implementation of a requirement include the

Requirements Management | Handbook | © IREB 179 | 262

following: the code has been created, unit tests have been created and successfully run, the

documentation has been adapted and the code convention followed.

Quality defects are difficult to detect if the data has been intentionally poorly maintained.

The person maintaining the data ensures that even if the data is not correct, it is plausible.

The data collection and data analysis processes should therefore include steps for quality

assurance. Diverse plausibility checks are feasible in which different data is compared. With

the earned value analysis, where the project progress and budget consumption are

compared with one another, data collection problems can also be identified in addition to

real project problems. Therefore, if the project progress and budget consumption do not

match, the first step would be to check that the data is correct. Other data can also be

cross-checked accordingly—for example, the status of the requirements can be compared

with the date of the elicitation of the requirements. If a requirement was elicited a long time

ago but still has an early status, then discussion of this requirement has been forgotten or it

is simply the case that the status has not been updated according to the processing status.

Evaluating the performance of specific employees

In Germany, employees and their data enjoy legal protection. In particular, measurement of

the performance of individual employees must be avoided. If, despite this, a report is still to

be created—for example, to collect information about employees' workloads so that work

can be redistributed if necessary—any such report must be agreed with the Works Council.

It is therefore better to collect data on a requirement, project, or team basis. Personal data

should only be collected when this is absolutely necessary. This is not usually the case.

Data protection regulations

Applicable general and company-specific data protection regulations must be followed

when defining and implementing the reporting system. If personal data is provided by

participants and further communicated within the company in the form of reports without

the knowledge of the participants, this can lead to problems. In this context, it is important to

clearly agree with the data creators who receives which data within the scope of the

decisions to be made. In general, personal and person-related data should be used sparingly

or should not be entered in the first place. When defining views, you should also ensure that

no statements about individual persons can be made so as not to unintentionally violate data

protection regulations.

Inflationary reporting

If the volume of report information increases constantly, this might also lead to a situation

where the report recipients are unable to process this data due to time constraints and

important decisions can no longer be made on a sound basis.

Therefore, less is more! Focus on the information that is really necessary. This can also mean

that different target groups receive different reports in which only certain aspects are

presented, or are presented at various levels of detail.

Requirements Management | Handbook | © IREB 180 | 262

8.4 Content for the requirements management plan

The requirements management plan defines which (requirements-based) reports are to be

created and when they are to be created. For each report, the report recipient and the goal

of the report are documented, for example in tabular form. The derivation of report content

from goals can be represented graphically as a goal, question, metric tree (as shown in

Figure 43). The requirements management plan also defines what content the report

contains and how this content can be determined or calculated from which attributes, and

how the content is presented (e.g., the graphical form of presentation). The specification can

also be documented in the form of a report template or view.

8.5 Literature for further reading

[DeMa1982] Tom DeMarco: Controlling Software Projects: Management, Measurement,

and Estimation. Prentice Hall/Yourdon Press, 1982.

Earned value analysis for beginners:

[Wann2013a] Roland Wanner: Earned Value Management: The Most Important Methods and

Tools for an Effective Project Control. CreateSpace Independent Publishing

Platform, 2013.

Earned value analysis for experts:

[Wann2013b] Roland Wanner: Earned Value Management: So machen Sie Ihr

Projektcontrolling noch effektiver. CreateSpace Independent Publishing

Platform, 3rd edition, 2013 (available in German only).

Requirements Management | Handbook | © IREB 181 | 262

9 Managing Requirements Engineering

processes

9.1 Requirements Engineering as a process

A process consists of interdependent activities which each transform input into output

[ISO9000]. Each activity is uniquely assigned to the organizational entity responsible for it,

for example, a role. As part of the development process, Requirements Engineering and

requirements management can be seen as processes.

The Requirements Engineering process{ XE "Requirements engineering process" } is

understood as a systematic process for developing requirements via an iterative,

cooperative process of eliciting, documenting, validating, negotiating, and managing

requirements (according to [LoKa1995]).

This Requirements Engineering process includes the following four types of activities

[IREB2015]:

▪ Eliciting requirements

▪ Documenting requirements

▪ Validating and negotiating requirements

▪ Managing requirements

In each project, there are several elicitation activities such as workshops and meetings with

stakeholders, document analysis, analysis of the legacy system, and so on. There are also

multiple individual activities for the other types of Requirements Engineering activities.

The Requirements Engineering process uses stakeholders' needs and ideas as input

information. In addition, the status quo before the project start (e.g., the legacy system) and

competing products also play a role. The result of the Requirements Engineering process is a

validated, conflict-free, consistent, prioritized, quality-assured requirements specification

that can serve as a reliable basis for further project work.

In general, the four activity types (whose procedure and methods are defined in the CPRE

Foundation Level [IREB2015]) have the input and results outlined below, which can of course

look different, especially if company-specific requirements or standards have to be met, or

according to the given constraints (see Table 8).

These four types of activities must always be performed, regardless of whether they are

explicitly documented or implicit. They do not have to be and, in fact, cannot be performed

sequentially; instead, they can run iteratively, incrementally, or in parallel. Requirements are

always elicited in some way, even if this is through informal discussions. There is usually also

documentation—in the worst case, chronological documentation or documentation spread

over numerous discussion notes. Documenting requirements implicitly only would of course

not conform to the recommendations of the IREB. Standards and company guidelines

require different implementation of these activities and define different guidelines with

regard to the documents to be created.

Requirements Management | Handbook | © IREB 182 | 262

Activity Type Input Result

Eliciting requirements Stakeholders and their needs and

ideas

If applicable: an existing legacy

system and its documentation;

competitor products

Oral and written requirements

including the system vision

Documenting

requirements

Oral and written requirements Written requirements specification

(textual or model-based or both)

Validating and

negotiating

requirements

Written requirements specification A validated, conflict-free,

consistent, prioritized, quality-

assured requirements

specification

Managing

requirements

Written requirements specification

+ change requests

A constantly up-to-date,

validated, conflict-free,

consistent, prioritized, quality-

assured requirements

specification

Preparation of requirements for

individual stakeholder groups

 Table 8: Four activity types for Requirements Engineering, as well as their input and

output (result)

The results of the Requirements Engineering process must satisfy quality criteria in three

independent dimensions: specification, representation, and agreement [Pohl2010].

Requirements should become more mature over time within these dimensions, although

there does not have to be a simultaneous, constant increase in all dimensions. For example,

growth in the specification dimension (e.g., formalization) can lead to a regression in the

agreement dimension because new contradictions have come to light due to the

formalization.

▪ Specification: This dimension describes the completeness of the specification or the

completeness of the understanding of the requirements. At the beginning of the

Requirements Engineering process, requirements are vague and unclear (opaque). As

the process progresses, requirements become more complete in the sense of a

thorough coverage of the problem to be solved and a description that is detailed

enough to be properly understood. Various standards provide guidelines as to which

conditions must be met by the requirements in order for them to be considered

complete. However, it is not possible to prove the completeness of requirements.

▪ Presentation: Here, the scale varies from informal to formal. Informal presentation

includes sketches, free text, and prototypes. Semi-formal presentation includes

graphical models such as class diagrams, state machines, use case diagrams, or data

flow diagrams. Use cases presented in tabular form, which strictly follow a given

Requirements Management | Handbook | © IREB 183 | 262

syntactic structure, are also semi-formal. Formal specifications describe

requirements completely uniquely using logic languages and formal semantics.

Preparation of a formal specification usually begins with informal forms of

presentation.

▪ Agreement: Establishing agreement is another goal during the Requirements

Engineering process. In the agreement dimension, you move from the personal view

to a common view of the requirements.

The requirements specification has to be optimized in all three dimensions during the

Requirements Engineering process. Here, elicitation activities mainly contribute to

improvement in the specification dimension, documentation activities to improvement in the

presentation dimension, and validation and negotiation activities to improvement in the

agreement dimension. Requirements management aims to maintain the quality level in all

three dimensions, even when changes occur.

Various standards (see Section 1.5) propose how the Requirements Engineering process or

the development process can be designed. However, these are merely blueprints that have

to be adapted to the circumstances in the respective company. Through tailoring, process

parameters, roles, activities, and result types can be adapted to specific needs.

!

Specifications for the Requirements Engineering process in the example

bank

As a certified CPRE professional, Peter Reber naturally complies with the

IREB standard. However, this standard does not specify how the

Requirements Engineering process is to be performed in detail. In fact, quite

the opposite is true: this standard shows the wide range of selection options

and supports tailoring of the process.

The four activity types are mandatory:

1. Eliciting requirements

2. Documenting requirements

3. Validating and negotiating requirements

4. Managing requirements

The methods that can be used to perform these activities and the criteria for

selecting the correct method are described in the CPRE Foundation Level

and the respective module. We have already defined the requirements

landscape for the case study project in this book.

What still has to be defined is who performs the planned activities how and in

what order. We discuss these parameters of the Requirements Engineering

process in the following Section 9.2.

Requirements Management | Handbook | © IREB 184 | 262

9.2 Parameters of the Requirements Engineering process

Even if the same elicitation, agreement, and documentation methods are used, the

Requirements Engineering process can vary greatly and must be adapted in particular to the

given constraints, such as the project size and the skills of the persons involved. Despite the

variety of Requirements Engineering processes that exist in different process models, there

are only a certain number of process parameters that can be changed when selecting or

adjusting the Requirements Engineering process:

▪ Timing of the elicitation (upfront or iterative)

▪ Level of detail of the documentation, that is, the lowest level of detail used for the

specification (heavyweight versus lightweight specification)

▪ Incorporation of changes, in particular: change request versus product backlog

▪ Allocation of responsibility

These parameters should be adjusted to the given constraints. Such constraints are:

▪ The size of the project

▪ Is it a new implementation or a small enhancement, improvement, or variation to an

existing, mature system or product?

▪ Is the system security-critical?

▪ Was a fixed price agreed or not?

▪ Is there a stable team that has been working together for years?

▪ Availability of people and their qualifications

9.2.1 Timing of the elicitation (upfront or iterative)

Requirements can either be elicited completely at the beginning of the project (upfront{ XE

"Upfront requirements elicitation" }) or iteratively (iterative Requirements Engineering{ XE

"Iterative Requirements Engineering" }): in the first case (upfront), a requirements

specification (e.g., a customer requirements specification) is created at the beginning of the

project, describing the planned project scope in its entirety, at least at the uppermost level

of detail of the requirements. With iterative Requirements Engineering, the aim is not to

define the requirements, or even just the project scope, completely at the beginning, but

rather to consider the requirements documentation (e.g., the product backlog) as a

preliminary list. Requirements can be added or changed at any time, even during

implementation. Caution: there is a difference between iterative Requirements Engineering

and iterative development. It is therefore conceivable to first create a complete

requirements specification upfront and subsequently implement the requirements through

iterative development.

If the project is a small enhancement, improvement, or variation of an existing, mature

system or product, or a small project, then it is to be expected that stable requirements can

be defined for the entire project with few surprises expected. This is where upfront

requirements elicitation is possible and useful.

Requirements Management | Handbook | © IREB 185 | 262

However, if the project is very innovative with many uncertainties, is a large project, is in a

volatile environment, has changing, undecided or conflicting stakeholders, or there are other

risk factors that make a reliable upfront specification impossible, iterative Requirements

Engineering serves to reduce risk. However, iterative Requirements Engineering requires

regular participation of at least the most important stakeholders. If this is not possible, and

the only opportunity is a one-time elicitation workshop or an initial elicitation phase, then the

requirements must be elicited upfront. An upfront specification is also required if the

specification has to be created under more difficult conditions, if the project has a fixed

price (meaning that the project scope has to be defined early), the system is a security-

critical system for which a security analysis has to be performed in the overall view, or a

technology is used that is difficult to change and enhance, that is, it is difficult to consider

requirements that arise spontaneously.

9.2.2 Level of detail of requirements documentation

The level of detail of the documentation or specification can vary between heavyweight{ XE

"Heavyweight Requirements Engineering" } and lightweight requirements{ XE "Lightweight

Requirements Engineering" }: the heavyweight specification describes all requirements in

detail at multiple levels of detail, including all their attributes and traceability relationships.

This makes the specification very comprehensive. In agile development, it is common to

create lightweight specifications with only a few levels of detail. In this case, requirements

are specified only as comprehensively as necessary and not earlier than necessary.

The point in time at which certain information is required depends on the process model.

What is needed depends on the stakeholders, their needs, and background. A project-

specific stakeholder analysis helps to define how detailed the requirements specification

must be. Among other things, the purpose of a specification is to enable the developer to

understand what stakeholders want. With a lightweight specification, details of the

implementation are left to the developer (especially if he is very familiar with the domain),

are discussed verbally without being documented, or are refined using a prototype.

The lightweight requirements specification describes requirements as user stories, for

example. Requirements are only specified in detail when their implementation is about to

begin. Even though upfront specification is usually heavyweight (e.g., in the waterfall model

and V-Modell XT) and iterative specification is usually lightweight (as in scrum and other

agile methods, see Chapter 10), the two parameters timing and level of detail are

independent of one another. It is possible to create both a lightweight specification upfront

and a heavyweight one iteratively (as in the Rational Unified Process).

Whether the specification is lightweight or heavyweight depends less on the project size or

the type of contract, and above all, more on the information and documentation need of the

specific project and its stakeholders.

Due to statutory requirements alone, security-critical systems are usually specified in

heavyweight form and completely. In principle, a lightweight specification saves

unnecessary effort if the information that would have been documented additionally in the

heavyweight specification is available to all stakeholders in an undocumented form—for

Requirements Management | Handbook | © IREB 186 | 262

example, in the case of small teams or teams that have been working together for a long

time, developers with very good knowledge of the domain and the customer, and for the

further development of an existing system.

However, the lightweight method can also be used if it is technically easy to create and

change a prototype quickly and the requirements are refined based on the prototype.

The level of detail is defined in the requirements information model (Chapter 2).

9.2.3 Change management: incorporation of changes (change

cequest versus product backlog)

Requirements change during a project. Some Requirements Engineering processes integrate

new or changed requirements into the requirements specification and development process

as change requests. The projects concerned are usually projects with a fixed price and

upfront requirements specification, which means that from an organizational and legal point

of view, the definition of the project scope and the requirements elicitation are completed at

a certain point in time. From a legal perspective, subsequent changes are contractual

changes. In legal terms, a change request{ XE "Change request" }{ XE "Change request" }

means a new contract.

Normally, the project's contract already specifies how change requests are to be handled.

They usually go through a simplified approval procedure with the following steps: analysis (of

the requirements and their benefits), impact analysis (i.e., analysis of changes to the system,

their costs and risks), decision by the Change Control Board, and then implementation. A

change request is often described using a change request template that assigns a unique

number and title to the change request, describes the problem to be solved and the

proposed solution, quantifies costs, benefits, and risks, and manages the status (requested,

accepted, rejected, postponed, implemented) (see Chapter 5).

In iterative Requirements Engineering, however, requirements are collected in the product

backlog and all requirements—old and new—are treated equally. This is made possible by the

fact that there is never a commitment to a defined system scope. The advantage of this

procedure lies in the flexibility. New, important requirements can be integrated into the

project easily. However, this flexibility also has the disadvantage that it is ultimately difficult

to define the exact delivery scope. The number of requirements in the product backlog can

increase constantly; in the worst case, more quickly than the requirements are implemented.

Nevertheless, it is not mandatory for an upfront requirements specification to treat later

requirements as change requests. It would be conceivable to adjust the requirements

specification created upfront later without recording and approving changes as change

requests. Changes to the requirements artifacts must of course be documented and

traceable.

Conversely, an approval for new requirements could also be demanded in iterative

Requirements Engineering. The primary decisive factor here is the form of contract. In the

case of a fixed price contract, a new requirement can only be integrated into the project if

both contracting parties agree, which requires a more or less extensive approval process. In

Requirements Management | Handbook | © IREB 187 | 262

other cases, how changes are handled is a matter for agreement between the client and the

contractor.

From the perspective of requirements management, it definitely makes sense to integrate

the change requests into the existing requirements specification sooner or later so that an

up-to-date specification of the planned system is available at any point in time.

There should therefore not be two separate specifications—for example, the requirements

specification with the status at the start of the project plus a list of chronologically sorted

change requests. This type of presentation does not fulfill the modifiability requirement for

requirements specifications. The main question from the point of view of Requirements

Engineering is therefore who integrates change requests into the specification, when do they

do this, and in what form? Good coordination between project management and

requirements management is definitely required. This allows requirements management to

provide the decision makers with important information about the probable impact of a

change (with regard to impact analyses, see Section 6.5.2 on the usage strategy for

traceability).

9.2.4 Allocation of responsibility

A single role (for example, the requirements manager) can be responsible for Requirements

Engineering in the sense that this role plans, controls, and improves the Requirements

Engineering process. The role either performs the activities involved in the Requirements

Engineering process or ensures that they are performed by someone else. However, there

can also be an entire team or several roles responsible for Requirements Engineering, either

for different activities or different content (e.g., functional requirements versus usability

requirements). Requirements engineering can also be closely integrated into the

development process without a separate Requirements Engineering process or a

Requirements Engineering role existing. In this case, the development team performs the

Requirements Engineering activities—that is, the team members elicit, document, check,

and manage requirements.

The bigger the project, the more it makes sense to define a separate requirements manager

role to monitor this area of activity in the project. However, this role can also be defined for

small projects, in which case it is not a full-time role. The requirements manager should be

the person who is most familiar with Requirements Engineering and requirements

management. In particular, this person must have very good communication skills and must

also be in constant contact with all stakeholders. In addition to methodological

Requirements Engineering and requirements management knowledge and technical

knowledge, which the requirements engineer needs, the requirements manager also needs

management skills to be able to set up, manage, and monitor the Requirements Engineering

process.

Requirements Management | Handbook | © IREB 188 | 262

!

Parameters of the Requirements Engineering process in the example bank

In our case study, the requirements are elicited upfront, as the project is a

further development of software that the team knows well. It is therefore

very feasible to elicit and describe the requirements at the beginning. In

contrast, development will take place iteratively.

As defined in Chapter 2, the requirements are described at multiple levels of

detail. This supports a detailed security analysis and a complete

documentation of the system for the future.

Change management: the project is an in-house project with a fixed budget.

However, as there is no fixed price contract, the content—if not the project

scope—allows some flexibility in principle.

When new, important requirements arise, these should be included in the

project and other, less important requirements deferred. This is particularly

true for changes in law, which have to be considered at short notice.

However, these changes to requirements must be checked properly and

executed in a controlled manner.

This requires a documented change process in which, during the impact

analysis, not only do the implementation costs have to be estimated, but the

security team must also submit a risk assessment for the IT security, the

business analysts must submit a risk assessment for the business processes,

and the usability expert must submit a risk assessment with regard to

accessibility. Based on the evaluations, a Change Control Board ultimately

decides whether the change to the requirement is accepted, rejected, or

deferred.

The responsibilities were defined in Chapter 1: as the requirements manager,

Peter Reber plans and monitors the Requirements Engineering process,

while multiple experts perform Requirements Engineering—that is, they elicit,

document, and agree requirements. Several external business analysts

analyze the business processes, a team of IT security experts conducts risk

analyses, the usability expert designs alternative interface designs and

improves accessibility, and a moderator holds an ideas workshop with the

Customer Advisory Board.

9.3 Documenting the Requirements Engineering process

The Requirements Engineering process consists of numerous activities of the four types

mentioned above, such as elicitation workshops, document analyses, specification reviews,

etc. Many of these activities are planned in the form of meetings or workshops, as they

involve multiple persons. The order of these activities results from the selection of the

process parameters, for example, whether requirements are elicited and specified upfront,

or how changes to requirements are handled (see Section 9.2).

Requirements Management | Handbook | © IREB 189 | 262

The following applies regardless of whether you are defining a generic Requirements

Engineering process that is to apply as a company specification for all projects, or whether

you are planning the Requirements Engineering process for a specific project.

The activities and their sequence can be presented as a UML activity diagram. The activity

diagram can also show the assignment of activities to roles. You will be familiar with this

notation from the CPRE Foundation Level ([PoRu2015].

The assignment of responsibilities for activities to roles can also be presented in more detail

using a RACI matrix like the following. RACI stands for:

▪ R = responsible = responsible for the execution

▪ A = accountable = authorizes, for example, the activity and its budget

▪ C = consulted = (will be) consulted, especially in terms of technical, content-related

responsibility

▪ I = informed = to be informed, i.e., the person is to be informed about the results

The following table shows an example of an excerpt from a RACI matrix.

Activity Requirements

Manager

Business

Analyst

IT Security

Expert

Usability

Expert

Moderator Custom

er

Advisor

y Board

Analysis of

business

processes

A, I R I C, I I

Risk analysis A, I C, I R C, I

Interface design A C C R

Ideas workshop A, I I I I R C

…

Table 9: Example of a RACI matrix for Requirements Engineering

!

The Requirements Engineering process

Table 9 shows an excerpt from the RACI matrix for our case study. The activities

presented here all belong to the activity type requirements elicitation. Elicitation

of the requirements probably also includes further activities not specified in more

detail here. There are also activities of the type requirements documentation,

validation and negotiation of requirements, and requirements management.

However, our goal here is not to plan the Requirements Engineering process for

the entire project completely, but rather to illustrate the corresponding methods

of presentation.

Requirements Management | Handbook | © IREB 190 | 262

Figure 44: Activity diagram (excerpt) for the Requirements Engineering process for

the case study

Figure 44 presents the same excerpt from the Requirements Engineering process

as an activity diagram. How the two forms of notation differ and supplement each

other is clear:

The RACI matrix can present the responsibility of the different roles for the

activities in more detail, whereas in the activity diagram, an activity is usually only

in one swim lane: in the lane that belongs to the role responsible. Anyone else

involved in the activity is not shown.

In contrast, the activity diagram also documents dependencies between the

activities, for example, the order of the activities, such as "The risk analysis takes

place after the business process analysis (because it builds on the results of the

business process analysis)", or "Risk analysis and interface design can take place

in parallel".

The Gantt diagram in Figure 45 shows the time progression in even more detail.

The person responsible is defined in the column "Resp.", and the other RACI

responsibilities could also be presented here. For each activity, the time

progression is shown horizontally as a row, with each calendar week (CW) in which

work is performed on this activity shown in black. Thus, the duration and repeated

work can be presented in more detail than in the activity diagram. In the Gantt

Requirements Management | Handbook | © IREB 191 | 262

diagram, however, the presentation of dependency relationships between the

activities is not so clear, even though arrows are used to represent these.

Figure 45: Gantt diagram (example). BA stands for business analyst, SA for security

analyst (or IT security expert), UE for usability expert, Mod. for moderator.

The three types of presentation therefore complement each other well. They can

thus be used together. However, it is more efficient to concentrate on the least

number of forms of presentation as possible. It is also feasible to use the Gantt

diagram for the rough planning of the work packages, and to use one activity

diagram for the fine planning of each work package.

To manage dates and budgets quantitatively, the Requirements Engineering process can

also be presented as a project plan. Other documents that can represent and support the

Requirements Engineering process are: checklists, templates, sample documents and

guidelines for the execution of individual activities.

If many people are involved in the Requirements Engineering process, it also makes sense to

support this process with a tool. All workflow management systems in the broadest sense

are suitable for this.

9.4 Monitoring and controlling the Requirements Engineering

process

Monitoring the Requirements Engineering process means ensuring that all activities are

performed and the defined results are delivered on time and that the activities remain within

budget. Reports that regularly record dates, budget consumed, status, and degree of

completion of the Requirements Engineering process and its individual activities and

compare the actual values with the target values from planning are helpful for this (see

Chapter 8).

Controlling the Requirements Engineering process means executing it according to the plan

or, if the process deviates from the plan, taking corrective action. For example, if it becomes

apparent that a deadline or budget cannot be met, the consequences for the overall project

must be determined and—if appropriate—countermeasures taken. There are two alternative

options for correcting the situation: you can adjust the plan to the actual progress, or adjust

the progress to the plan. The former is easier, but often difficult for a project with a binding

Requirements Management | Handbook | © IREB 192 | 262

end date and budget. To adjust the ongoing process to the plan, planned activities may have

to be omitted, brought forward, or performed with less effort. Careful trade-offs must be

made where they cause the least damage: for example, individual stakeholder groups are

not interviewed, individual open questions are not clarified, details are not specified,

unimportant change requests are rejected, and so on. The prerequisite for setting such a

focus is, of course, that the requirements have been prioritized (see Chapter 4). It is

important to consider the risk: Does the benefit of the savings outweigh the possible

damage?

Practical tip: If the defined Requirements Engineering process cannot be adhered to, there can

be various causes. For example, the employees may not know the process or may not have

understood it correctly. It may also be the case that the process does not describe the optimal

working method and is therefore not adhered to. There may even be resistance to new or

certain working methods that is causing the process not to be adhered to. As each of these

causes requires a different measure to correct it, it is essential to find out why the process is not

being put into practice.

9.5 Process improvement for the Requirements Engineering

process

A process can always be improved further. The CMMI{ XE "CMMI" } (capability maturity

model integration) maturity model requires that a mature development process plans

activities for continuous improvement of the work processes. The basis for this is an analysis

of the actual process, referred to as an evaluation or audit, that systematically investigates

how good the process currently is, where it is already good, and where there is potential for

improvement. In an audit, the current process is usually compared to a reference process

(e.g., prescribed by a standard) and process key figures are collected (see Section 8.2.2.1).

The basis for a process analysis should always be objective, measurable criteria.

When performing an audit, you go through the following steps, for example:

1. Recognize the need for an audit

2. Plan the audit, for example, the purpose and goal, the scope (Process? Product?

Which?), the team, the criteria, the resources, and deadlines

3. Perform the audit and document the results

4. Evaluate the results: strengths and weaknesses, required improvements, and the

most urgent measures

5. Implement the measures

6. Measure the improvements

Process improvements can be performed either abruptly—a process rearrangement—or

continuously. A process rearrangement changes many activities and parameters of the

process at the same time. This has the advantage that it is possible to achieve a significant

increase in efficiency, which, however, usually only occurs after all participants have

become accustomed to the new process. However, there is also the risk that the new

Requirements Management | Handbook | © IREB 193 | 262

process will not prove its worth and will reduce efficiency. Resetting will then again involve

great effort.

Continuous process improvement avoids this risk and leads to short-term (mostly small)

improvements with little effort. According to the principle of continuous process

improvement{ XE "Continuous process improvement" } (CPI), processes are optimized

gradually by repeating the following four activities (PDCA{ XE "PDCA" }) of the Deming

cycle{ XE "Deming cycle" } [Demi1982] iteratively:

▪ Plan: The actual process and, in particular, the need for improvement are analyzed.

Based on this, the desired process is planned and documented.

▪ Do: Improvement actions are developed and tested in a pilot project and

accompanied by measurements.

▪ Check: A check determines whether the actions have brought about the desired

improvement. The actual values are compared with the planned values.

▪ Act: Based on the results of the actual/plan comparison, improvement actions are

introduced continuously or, if necessary, new actions are planned. The

implementation of the actions is monitored and accompanied by measurements.

The actual and target process are characterized using measured quantities (see Chapter 8).

Such measured quantities can be:

▪ The proportion of the project budget invested in Requirements Engineering. Both too

much and too little can be questionable. Normally it is 10-30% of the project budget.

▪ The number of requirements still to be implemented (weighted according to expected

effort) measures the work that is still to be completed up to the end of the project.

▪ Number of requirements (or rather, number weighted by implementation effort)

implemented per time unit. Together with effort estimations for the requirements still

to be implemented, forecasts can thus be made about the remaining duration of the

project.

▪ Change rate of the requirements: A rate of 1-5% of the requirements per month

(measured in effort) and, in the worst case, 30-50% over a project duration spanning

multiple years is considered normal [Eber2012].

Fewer changes may mean that no one is really interested in the requirements and

stakeholders are not sufficiently involved. Too many changes are also an alarm signal:

requirements are not yet stable, stakeholder groups may be too heterogeneous or in

conflict, and it is still too early to implement the requirements.

▪ Processing time of change requests from order to implementation.

With the help of benchmarking it is possible to find out which figures make sense and are

achievable as target values.

Improvement actions can either refer to the process parameters described in Section 9.2, or

to how the individual activities are performed in detail, for example, the methods used.

Another possibility for process improvement is to analyze the errors made in Requirements

Engineering—for example, errors found during the specification inspection, or errors

delivered with the software that can be traced back to Requirements Engineering. You then

Requirements Management | Handbook | © IREB 194 | 262

ask about their causes and the causes of the causes. This gives ideas for improvement

actions.

Maturity models such as the CMMI (capability maturity model integration), based on ISO

15504 [Kneu2007], [CKS2011], [CMMI], or ITIL for software maintenance [Beim2012],

[Ebel2014] offer more concrete help for process improvement in Requirements Engineering

(but not only there).

According to [Eber2012], a maturity model is a "model that reflects the process capability in

defined categories, thus allowing a reliable and repeatable process evaluation. A maturity

model makes demands of processes and does not prescribe any processes itself. It is

therefore not a process model. Used to evaluate process maturity and process

improvement, for both a company's own process and those used by the supplier."

Maturity models describe activities or practices that must be performed to reach a certain

level of maturity. All other methods of process improvement can also be used to improve the

Requirements Engineering process, such as TQM (Total Quality Management) [HuMa2011]

and Six Sigma [Tava2012], [BWJ2013].

In particular, TQM consists of principles for achieving quality and economic action.

Important factors here are, for example, customer orientation, process orientation, quality

orientation, joint responsibility of all employees, continuous improvement, and rational

decisions. In contrast, Six Sigma is a framework for improvement, whereby measurements

and statistical analyses are performed to create products that are free of errors in a process

that is free of errors.

In particular, improving Requirements Engineering is supported by the collection of best

practices from Sommerville and Sawyer [SoSa1997], who differentiate between three

categories of best practices: basic, intermediate, and advanced. The first step when

improving the Requirements Engineering process is to implement all basic practices, then

the intermediate practices, and finally, those practices classified as advanced.

The basic techniques include, for example, the definition of a standard template for the

requirements specification or a checklist for inspecting this specification.

The template for an action plan from Karl Wiegers [Wieg2005] supports the concrete

planning of process improvement. The template comprises the following content:

▪ Name of the improvement project

▪ Date

▪ Goals (of the improvement, expressed as business goals)

▪ Indicators of success (i.e., achievement of goals)

▪ Organizational influence of the change

▪ Participants (employees, their roles and time budgets)

▪ Measurement and reporting process (when will the progress of actions within this plan

be monitored, by whom, and how)

▪ Dependencies, risks, and constraints

▪ Estimated completion date of all actions within this plan

Requirements Management | Handbook | © IREB 195 | 262

▪ Actions (3-10 per plan) with identifier, person responsible, target date, purpose,

description, deliverables, and resource requirements

When improving the Requirements Engineering process, note that it cannot be optimized on

its own, but only in cooperation with other project activities such as project management,

development, and testing. Changes in the Requirements Engineering process will also affect

those people's work.

Practical tip: Every process should be as simple as possible and only as complex as necessary.

The larger the number of binding guidelines you make, the more you restrict creativity and

flexibility. The constraints change, and therefore processes must also be constantly adjusted. If

a process does not change, it becomes obsolete.

!

Improving the Requirements Engineering process

The Requirements Engineering process in our case study has been newly set up

and encompasses a number of stakeholders who have not worked together

before. These are risk factors that make observation of the Requirements

Engineering process particularly important.

In Section 8.2.2.1, we discussed which key figures the status report should

contain and why these key figures are so important. This data can be used to

submit an updated forecast for the delivery deadline on a weekly basis.

If delays or other difficulties occur over the course of the Requirements

Engineering process, the causes are investigated and actions taken.

However, a proactive approach is also to be taken, and risks associated with

delivery reliability identified. Delivery reliability is very important for the project

as a whole, and therefore this also applies for the Requirements Engineering

process. Furthermore, various activities build on one another and are therefore

dependent on one another. Together with the project manager, Peter Reber

therefore performs a critical path analysis in the network diagram of the

Requirements Engineering process to find out which activities are particularly

critical for meeting the final deadline. These activities are then to be monitored

particularly closely. (We do not describe the network diagram technique in more

detail here because it is a project management method. However, you can find

more information about it in DIN 69900 [DIN69900] and in any project

management book). The risk analyses that are to be performed after every

change to the requirements and for every requirement change are seen as

particularly critical. To ensure that these are not delayed unnecessarily, the

availability of multiple IT security experts is ensured. These experts plan a

workshop for every Monday afternoon. If the workshop is not necessary, it can

be canceled. This ensures that resources are regularly available for the risk

analyses.

Requirements Management | Handbook | © IREB 196 | 262

The persons involved in the Requirements Engineering process are also asked to

give their opinion. The usability expert sees a risk for the quality of the results if

the interface design is created without participation by the users. The expert

would like the opportunity to get feedback from the users, who are represented

here by the Customer Advisory Board. Therefore, an additional activity "User

tests of the interfaces" is scheduled. This activity is performed by the usability

expert and the moderator together and they consult the Customer Advisory

Board. Table 10 shows the extended RACI matrix.

Activity Requirements

Manager

Business

Analyst

IT

Security

Expert

Usability

Expert

Moderator Customer

Advisory

Board

Analysis

of

business

processes

A, I R I C, I I

Risk

analysis

A, I C, I R C, I

Interface

design

A C C R

User tests

of the

interfaces

A C R C

Ideas

workshop

A, I I I I R C

…

Table 10: Example of a RACI matrix for Requirements Engineering

9.6 Content for the requirements management plan

The requirements management plan documents the Requirements Engineering process in

one of the notations described above. It also specifies whether the requirements are elicited

upfront or iteratively, how changes to requirements are to be incorporated, and the

responsibilities for the Requirements Engineering activities. The level of detail is defined by

the requirements information model.

It should also be clear how the Requirements Engineering process is monitored (e.g., the

report used). Actions for evaluating and improving processes should also be planned, for

example Lessons Learned analyses after the end of the project.

Requirements Management | Handbook | © IREB 197 | 262

9.7 Literature for further reading

[BWJ2013] Franz J. Brunner, Johann Wappis, Berndt Jung: Null-Fehler-Management:

Umsetzung von Six Sigma, Carl Hanser Verlag GmbH & Co. KG; edition: 4,

revised and extended edition, 2013 (available in German only).

[DIN69900] DIN 69900 Project management – Project network techniques; Descriptions

and Concepts, 2009.

[HuMa2011] Thomas Hummel, Christian Malorny: Total Quality Management: Tipps für die

Einführung, Carl Hanser Verlag GmbH & Co. KG; edition: 4, completely revised

edition, 2011 (available in German only).

[Tava2012] Serkan Tavasli: Six Sigma Performance Measurement System:

Prozesscontrolling als Instrumentarium der modernen Unternehmensführung,

Deutscher Universitätsverlag, 2012 (available in German only).

Requirements Management | Handbook | © IREB 198 | 262

10 Requirements management in agile

projects

10.1 Background

10.1.1 Basic principles of agile development

In its pure form, a classic, phased, plan-driven process would run as follows: first, the overall

project is planned, then the requirements are specified and accepted completely upfront,

and then the requirements are implemented and tested.

However, this process does not work in all projects and requirements domains. In particular,

it does not work if the requirements are not well-known enough due to a lack of knowledge

or experience (e.g., for very innovative projects) or the requirements are constantly changing

in a volatile project environment. Therefore, good Requirements Engineering usually takes

place iteratively, using prototypes, for example, and not according to a pure waterfall model.

The agile development methods{ XE "Agile development" } also recommend an iterative

process, although a lightweight process with very short cycles, whereby within an iteration,

only those documents that are absolutely necessary are created. Furthermore, agile

processes welcome new requirements and changes to requirements at any time, as these

can be considered in a subsequent iteration ("embrace change").

Of course, there are more than just these two extreme processes; there are all possible

levels between upfront and iterative Requirements Engineering, between heavyweight and

lightweight Requirements Engineering.

The Agile Manifesto{ XE "Agile Manifesto" } is the common foundation of all agile

approaches. From the software developers' point of view, the Agile Manifesto states

[AgileManifesto]:

“We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.”

In the agile approach therefore, collaboration, productivity, and the individual strengths of

the team are more important than contracts and documentation (including requirements

specifications).

This distinguishes agile methods from plan-driven approaches that require clear contractual

elements (e.g., project scope, requirements specifications, release plans, or a defined

change process).

Requirements Management | Handbook | © IREB 199 | 262

The Agile Manifesto also defines thirteen principles [AgileManifesto]:

1. "Our highest priority is to satisfy the customer through early and continuous delivery of

valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness

change for the customer's competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple of months,

with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals.

6. Give them the environment and support they need, and trust them to get the job done.

7. The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

8. Working software is the primary measure of progress.

9. Agile processes promote sustainable development. The sponsors, developers, and

users should be able to maintain a constant pace indefinitely.

10. Continuous attention to technical excellence and good design enhances agility.

11. Simplicity—the art of maximizing the amount of work not done—is essential.

12. The best architectures, requirements, and designs emerge from self-organizing teams.

13. At regular intervals, the team reflects on how to become more effective, then tunes

and adjusts its behavior accordingly."

The most important agile methods are:

▪ Scrum [ScBe2001], [ScSu2013]

▪ Extreme Programming XP [Beck2000]

▪ Kanban [Ande2010]

▪ Lean software development [PoPo2003]

▪ Crystal [Cock1997], [Cock2004], [Cock2006]

▪ Feature-driven development (FDD) [PaFe2002], [Nebu2014]

Practical tip: In actual fact, the alternatives for selecting a process model are not just "agile or

waterfall". Not only are there numerous agile and numerous plan-driven process models, there

are also various variants of every process model, such as hybrid processes with elements from

both worlds. You can also tailor a process model from an existing model [Herr2014]. In light of

these extensive selection options, it is worth analyzing the constraints and needs of your project

precisely and selecting the process model carefully. We cannot look here in detail at how you do

this. However, we will discuss the selection of the appropriate requirements management

practices from the repertoire of agile methods. Requirements management practices from

agile methods can also be applied in non-agile projects.

10.1.2 Scrum as the representative of the agile methods

Scrum{ XE "Scrum" } is currently the most widespread agile approach. For a complete

description, see the Scrum Guide 2013 [ScSu2013]. Scrum is described by its process (driven

Requirements Management | Handbook | © IREB 200 | 262

by its events), its artifacts, and its roles. These are very typical for agile frameworks and can

therefore be found in similar form in other agile methods.

10.1.2.1 Scrum process

Scrum defines the work process as follows: a sprint{ XE "Sprint" } (iteration{ XE "Iteration" })

lasts up to four weeks. At the end of every sprint, a finished, usable, and potentially

deliverable product (component, increment, etc.) must be completed.

The sprint contains the following events or meetings:

▪ Sprint planning: Here, the entries in the product backlog (the list of all requirements

currently elicited) that are to be processed in the next sprint are identified. A sprint

backlog is created by filing the backlog items to be processed. In this backlog, tasks

are often presented through user stories (see below), meaning that work is planned

based on requirements.

▪ Sprint: Defined period in which the team processes the items in the sprint backlog.

▪ Daily scrum: There is a daily scrum (also referred to as a stand-up meeting) every

workday. This is a team meeting to exchange information about current work and

difficulties and to plan the workday in detail.

▪ Sprint review: Here, at the end of a sprint, the work results of the sprint that has just

finished are discussed. The product owner accepts the sprint result.

▪ Sprint retrospective: After a sprint has finished, the scrum team (i.e., product owner,

scrum master, and development team) discusses the collaboration. The aim is to find

out how the work process in the team can be improved.

10.1.2.2 Scrum artifacts

The product backlog{ XE "Product backlog" }

▪ Contains the backlog items, such as the user stories for the product to be developed,

as well as technical and administrative tasks in the order of processing. The product

owner should sort the backlog items in the product backlog such that the goals and

missions can be achieved optimally.

▪ Does not have to be complete; it is maintained continuously.

▪ Describes high-priority user stories in more detail than the low-priority ones.

The sprint backlog{ XE "Sprint backlog" }

▪ Contains all backlog items to be realized in this sprint, along with the plan for the

delivery of the product increment and for fulfilling the sprint goal.

▪ Makes all the work that the development team deems necessary to achieve the sprint

goal visible.

▪ Is supplemented with additional work by the development team if this work is

necessary to achieve the sprint goal.

▪ As good practice, the backlog items are broken down into tasks lasting typically one

workday.

Requirements Management | Handbook | © IREB 201 | 262

One tool that is widely used in practice is the task board. This is a pinboard for visualizing the

sprint backlog and the degree of completion of the backlog items. The tasks of the current

sprint move from left to right according to the processing status. Each column represents a

status: To Do, In Process, To Verify, and Done. Each line groups the tasks that belong to one

backlog item (e.g., user story). The task board thus presents a view of the requirements (user

stories) and their status.

Another tool often used in practice to present project progress is the burndown chart. This is

a graphical presentation, to be recorded every day, of the remaining effort to be performed

for each sprint. In an ideal situation, the curve falls continuously (hence burndown) and at the

end of the sprint, the remaining effort is zero. Here, the status and degree of completion of

the current sprint presented on the task board are visualized quantitatively and graphically.

The increment is the completed, executable, and potentially deliverable product at the end

of the sprint. According to the Agile Manifesto, this is the most important artifact.

The impediment backlog is a list of all impediments to the project. The scrum master,

together with the team, is responsible for eliminating these impediments.

From the point of view of requirements management, the user story{ XE "User story" } is the

central artifact. A user story describes a requirement on an index card with a defined

sentence construction. A user story usually takes the following form:

 As <ROLE>,

 I want <FUNCTIONALITY>,

 so that <BENEFIT>.

For example:

 As a customer,

 I want to transfer money from my account to another account,

 to pay my bills as soon as possible.

The specification of the benefit is optional and can be omitted. Specifying the benefit can

make the added value of the functionality for the role explicit, which in turn improves the

understanding of the user story.

The user story can also contain (e.g., at the corners) information such as the cost estimate

(e.g., in story points), the benefit for the user (on a points scale), and the technical risk. This

information is used to prioritize the user stories.

Requirements Management | Handbook | © IREB 202 | 262

Acceptance criteria and test cases are also specified more precisely for every user story.

These can be documented briefly on the rear of the index card in the following form:

 On condition that <PRECONDITION>,

 if <TRIGGER>,

 then <RESULT>.

For example:

On condition that there is more than €100 in my account,

if I activate a transfer of €100,

then there will be €100 less displayed in my account, and €100 more than before in the target

account.

Noting requirements (user story) and test cases on the same card provides the traceability

between both with little effort.

10.1.2.3 Scrum roles

Scrum differentiates between only three roles in the scrum team: product owner, scrum

master, and development team. The development team organizes itself—not only the

programming, but also Requirements Engineering, requirements management, and project

management. With regard to requirements management, the tasks are divided up as follows:

▪ The product owner makes all content-based decisions: which backlog items (e.g., user

stories) there are, what they cover, how they are formulated, how they are to be

tested, and in particular, what priorities they have.

▪ The scrum master is responsible for the understanding and the execution of scrum.

The scrum master does this by ensuring that the scrum team complies with the

theory, practices, and rules of scrum; that is, the scrum master coaches the scrum

team.

▪ The development team implements the requirements. The team members inform

each other about the processing status in the daily scrum.

10.2 Requirements management as part of agile product

development

In agile development requirements are very important. Requirements in the form of user

stories are particularly popular: the user stories are the basis for planning the iterations and

work, and for monitoring the progress on the task board and in the burndown chart. However,

it is typical for requirements to be specified as lightweight as possible and "just good

enough". In agile methods, team members usually work closely together and communicate

with each other on a daily basis. The user story is therefore merely a note about what was

discussed. It therefore does not need to be complete or clear for third parties.

Requirements Management | Handbook | © IREB 203 | 262

From the point of view of requirements management, the agile methods are presented as

follows:

▪ The agile requirements landscape is generally simple: user stories are used with

particular frequency, as well as additional acceptance tests for the specification of

the requirements. If necessary, user stories that belong together can be grouped in

epics (see below).

▪ Each requirement or user story has just a few attributes—for example, a cost and

benefits evaluation of the risk—which are included on the user story card. The product

owner evaluates the benefits, and the development team evaluates the technical risks

and costs.

▪ There are just a few views of the requirements: the product backlog, the sprint

backlog, and the task board.

▪ The effort for the backlog items is often estimated using planning poker, which we

described in Section 4.5.5. The criteria used to prioritize the backlog items are the few

available attributes, in particular the costs and benefits. The cost/benefit ratio thus

determines the priority. Or conversely, only those attributes that are useful for the

prioritization are managed.

▪ The order of implementation for the user stories is determined as follows: according

to the value for the product owner, according to technical dependencies (functions

that are the basis for others must be implemented first), according to the technical

risk (user stories that have technical risks with regard to implementation are

implemented as early as possible to allow the risks to be evaluated better at an early

stage), and according to sprint topic.

▪ There is no version management in this sense. Completed or obsolete user stories

usually end up in the wastepaper bin.

▪ The change process is simple: new requirements or changes to requirements are

written to the product backlog and considered in the next sprint planning. If a user

story that has not yet been realized is replaced, it ends up in the wastepaper bin. No

approval process and no committee are necessary.

▪ The product owner bears the full responsibility for this. The decision about the actual

implementation of new ideas is taken during the sprint planning.

▪ Variant management is not planned in agile development. Furthermore, traceability is

at best implicit, for example, through the assignment of user stories to iterations or

user stories to epics. The traceability between the user story and the code takes the

form of check-in comments in the version management system. User stories and test

cases must also be linked traceably with one another—for example, by being

physically on the same story card.

▪ Reporting is easy and is based on requirements: the task board shows the processing

status of every task and every user story for the current day. The burndown chart

shows, quantitatively, the amount of work still to be done and whether it is likely that

all planned user stories will have been realized by the end of the sprint. Furthermore,

no reports are necessary if the team coordinates with one another daily and

communicates constantly with one another.

Requirements Management | Handbook | © IREB 204 | 262

▪ In the agile methods, there is no explicitly defined Requirements Engineering process.

The product owner can either represent all stakeholders of the system and formulate

their requirements, or is responsible for eliciting these requirements. This

requirements elicitation process is not part of scrum and is therefore not defined

here.

▪ The impediment backlog and the sprint retrospective are used to improve the work

process and thereby also Requirements Engineering and requirements management.

▪ The tools to be used are simple. Originally, only index cards and a pinboard were used.

However, the more that agile teams do not work in the same location, the more that

simple software tools are being used. These tools implement the backlogs, task

board, and burndown chart electronically. This allows employees distributed globally

to access these artifacts at any time.

In agile development, therefore, some of the requirements management elements that we

recommend are missing. Naturally, these cannot simply be omitted without any risk! From

the perspective of requirements management, this lightweight, iterative agility requires the

following:

▪ The product owner knows the requirements or can elicit them. If applicable, the

product owner can consult multiple additional people. However, these persons must

be constantly available and must work actively in the project.

▪ The development team has enough domain knowledge to be able to understand the

requirements correctly despite their lightweight description as a user story. If

applicable, the lightweight user stories can also be supplemented and made more

specific with more heavyweight forms of presentation.

▪ The team organizes itself and takes responsibility for its own work.

In practice, it is actually the case that sometimes, the lightweight requirements specification

in the form of user stories and acceptance tests (see Section 10.1.2.2) is not enough.

However, the agile principles also do not prohibit individual or all requirements being

specified in more detail, in a more heavyweight form, or in a form other than user stories.

Methods from classic Requirements Engineering and classic requirements management can

be used additionally in agile projects if the team feels this makes sense or company

guidelines prescribe this. The use case, which is also established as a tool in classic

requirements specification, can be used as an artifact in an agile environment as well (e.g.,

[Cock2001] or [JSB2011]).

A mixture between a classic and an agile project is also feasible, for example, the creation of

a requirements specification upfront and then iterative agile development and testing.

The agile methods have already expanded with additional forms of the requirements

specification that originate from classic Requirements Engineering or have been adapted

from there in a lightweight form. In the following, we briefly describe the vision board, minimal

viable product (MVP) and minimal marketable product (MMP), epics, and story maps.

The vision board (also referred to as the product canvas) [Pich2014] describes the vision and

a very brief, lightweight form of a business case for a product or project. It has only five

fields, as shown in Figure 46.

Requirements Management | Handbook | © IREB 205 | 262

Figure 46: Vision board according to Roman Pichler [Pich2014] (own presentation)

Minimal viable product (MVP): This is the smallest product that can already be used to get

feedback from stakeholders. It contains just enough features for users to be able to evaluate

its usefulness [Ries2011].

Minimal marketable product (MMP): This is the smallest product that can be sold on the

market. It contains just enough features to allow a user to use it usefully. It is therefore the

smallest product that can be sold.

Epics are descriptions of requirements at a higher level of detail than user stories. They

therefore usually group multiple user stories.

An epic could bear the name "Account management", for example, and comprise multiple

user stories such as "View account balance", "Open account", and "Close account". Epics

can be discussed and presented as an epic value statement (see Figure 47) to show who they

are useful for and to what extent. This discussion of the benefits is then used to prioritize the

epics and the associated user stories and therefore the iteration planning.

Requirements Management | Handbook | © IREB 206 | 262

Figure 47: Epic value statement template [Leff2011]

Story maps{ XE "Story maps" } [Patt2008] are a presentation of the overview of the

connection between requirements and business processes. Story maps are used to

determine the "walking skeleton", that is, the minimum implementation of a functioning

business process. One possible presentation is to present the activities of the business

process horizontally and to assign the associated requirements (e.g., user stories) to the

respective activities.

The scaling of agile approaches to large and distributed teams is in its infancy, some

frameworks are currently being developed. Some approaches can be found in [Ecks2004],

[Ecks2010], [Leff2011], and [KoBe2013].

10.3 Mapping requirements management activities to scrum

activities

Scrum sees itself as a "framework within which people can address complex adaptive

problems, allowing them to productively and creatively deliver products of the highest

possible value" [ScSu2013]. However, scrum specifies only general work processes. In the

following table, the requirements management activities are assigned to the scrum activities

or artifacts. Furthermore, the executing role is specified in scrum. Not all requirements

management activities are covered by scrum. (That is, some of the activities are not

covered by the scrum guide. Beside the scrum guide there is a not insignificant amount of

literature describing more or less successful additions to scrum. Here we refer exclusively to

the scrum guide.) Whether and how the corresponding requirements management activity is

then executed in a scrum project is up to the scrum team.

Requirements Management | Handbook | © IREB 207 | 262

RM Activity Scrum Activity or Artifact Scrum Role

Assignment of

attributes

User stories in the backlog: description, order,

estimate, status, and value. Optional: grouping

PO, DT

Evaluation and

prioritization

Estimation of the benefits and costs through

planning poker

Arrangement of the user stories in the product

backlog

Selection of user stories for a sprint

Prioritization within a sprint

DT

PO

PO and DT

DT

Traceability There is an implicit traceability of user stories to the

corresponding acceptance test cases and, with

suitable attribute assignment, back to the sources

of the user stories.

In addition, traceability is possible within the

product backlog (dependencies) and from user

stories to the source code.

Scrum says nothing about connecting user stories

within the product backlog. Traceability via epics

(grouped user stories) would be conceivable.

Traceability is documented only if necessary.

None

Versioning Versioning of user stories is unnecessary. The

current version of a user story is always relevant.

None or PO

Changes Changes can be proposed at any time. New

requirements lead to new user stories, changes to

requirements lead to a user story being changed or

replaced by a new one.

PO

Variant

management

Agile methods do not explicitly support variant

management. However, it is possible to use

standard methods of variant management.

PO

Requirements Management | Handbook | © IREB 208 | 262

RM Activity Scrum Activity or Artifact Scrum Role

Reporting Reports are mainly verbal. The artifacts used to

track the completion status can also serve as

reports:

▪ Daily standup

▪ Sprint review

▪ Sprint retrospective

▪ Product backlog

▪ Sprint backlog

▪ Burndown chart

DT

Process

management

Sprint retrospective and impediment backlog SM, DT

Table 11: Mapping of requirements management activities to scrum

10.4 Literature for further reading

[AgileManifesto] Manifesto for Agile Software Development. Available at

http://agilemanifesto.org/. Last visited March 2024.

[Beck2000] Kent Beck: Extreme programming explained. Addison-Wesley, Upper Saddle

River, 2000.

[JSB2011] I. Jacobson, I. Spence, K. Bittner: Use Cases 2.0. Ivar Jacobson International,

2011.

[KoBe2013] H.-P. Korn and J.P. Berchez (eds.): Agiles IT-Management in großen

Unternehmen. Symposion, 2013 (available in German only).

[Leff2011] D. Leffingwell: Agile Software Requirements, Lean Requirements Practices for

Teams, Programs, and the Enterprise. Addison-Wesley Professional, 2011.

[PoPo2003] Mary Poppendieck, Tom Poppendieck: Lean Software Development. Addison

Wesley, 2003.

[Ries2011] Eric Ries: The Lean Startup: How Constant Innovation Creates Radically

Successful Businesses. Penguin, 2011.

[ScBe2001] Ken Schwaber, Mike Beedle: Agile Software Development with SCRUM.

Prentice Hall, 2001.

[ScSu2013] Ken Schwaber, Jeff Sutherland: The Scrum Guide — The Definitive Guide to

Scrum: The Rules of the Game, July 2013,

http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf. Last

visited March 2024

http://agilemanifesto.org/
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf

Requirements Management | Handbook | © IREB 209 | 262

11 Tool-based requirements management

The market for Requirements Engineering and requirements management tools{ XE "Tool" }

currently includes a number of different tool providers with different license models.

Everything from freeware to company licenses is represented. These tools differ above all in

their core focus (documentation, collaboration, traceability, agility).

Not all of the tools available on the market can be seen as true requirements management

tools, even though they can certainly be helpful for requirements management (e.g.,

modeling tools or version control systems (VCS)).

Via the following link, you can access an extensive list of more than 100 requirements

management tools, including a classification of their core focus:

https://makingofsoftware.com/resources/list-of-rm-tools/. [HJD2011], describes how the

requirements management tool DOORS® can be used to manage requirements.

Practical tip: You will not always find special requirements management tools being used in a

company. Standard office applications and web-based platforms are often used for

exchanging documents and for collaboration. Even under these conditions, a good

requirements management can be implemented with some organizational rules and the

required discipline. Always remember that selecting just any requirements management tool is

generally not a constructive solution if you have not yet decided how you want to implement

your Requirements Engineering process (see the requirements management plan). A short aid

to selecting tools based on the requirements management aspects discussed in the handbook

can be found in Annex B.

11.1 Role of tools in requirements management

The use of tools is intended to make it easier for the requirements manager to document

and manage requirements. Due to their special functionalities, requirements management

tools enable a holistic view of requirements, in that, amongst other things, relationships

between different requirements (see Chapter 6, Traceability) as well as the lifecycle of

individual requirements (see Chapter 5, Version and Change Management) can be

represented.

A requirements management tool is a software application whose main objective is to

support activities in requirements management.

Many different applications are traditionally used in software and system development.

However, many of them cover only some aspects of Requirements Engineering and/or

requirements management. The distinction between these tools and dedicated tools for

requirements management is therefore not always clear-cut.

https://makingofsoftware.com/resources/list-of-rm-tools/

Requirements Management | Handbook | © IREB 210 | 262

Tools for requirements management are based on specific assumptions, which means that

these tools can concentrate, for example, on specific process models, work environments,

or application domains:

▪ Specific process models, such as agile or plan-driven development

▪ Specific work environments, such as local or distributed collaboration

▪ Specific application domains, such as the automotive industry or the armaments

industry

[SoSa1997] describes the following five features as core functions of a requirements

management tool:

▪ Editor for requirements, including their attributes, to enable the recording and

attribute assignment for uniquely identifiable requirements artifacts; the editor can

be a pure text-based editor or an editor that supports textual and model-based

descriptions

▪ Import of requirements from existing documents into the tool (e.g., based on the

ReqIF format, see Section 11.3) and export of managed requirements to other

formats (e.g., in document-based specifications)

▪ Tracing of requirements, beginning with support for maintenance of traceability

relationships up to the use of maintained traceability relationships—for example, as

part of an impact analysis

▪ Versioning of requirements and the creation of requirements configurations and

baselines

▪ The creation of user-defined views of requirements, including their attributes

If we compare these features with those from [PoRu2015] (Section 9.3), we find the following

additional features which are important when selecting a requirements management tool:

▪ Distributed processing of requirements artifacts, including access control

▪ Creation of role-specific views for different user groups

▪ Creation of reports or evaluations of the managed artifacts

Regardless of the features that a tool offers, when selecting and introducing a tool, note that

any requirements management tool selected must fit with the procedures and processes

established in the company.

11.2 Basic procedure for tool selection

Selecting the right tool is not easy. There are a lot of tools, and the tool that best meets your

situation depends on your own Requirements Engineering process. It is the process that

determines the requirements for the tool.

Requirements management tools are usually selected for more than just one single project.

It is often the case that tools are selected for multiple projects—for example, for all projects

in a department or a company. This generally makes the tool selection complex, which

means that the introduction of a requirements management tool is often driven by a

separate project, see also [RuSo2009].

Requirements Management | Handbook | © IREB 211 | 262

The recommendation is to implement the tool evaluation and selection through a separate

project. [RuSo2009] uses a two-phased selection procedure in which there is an initial, rough

selection for a first potential tool list (long list), and in a second step, an advanced selection

to reduce the tool list to the favorites (short list). Based on the short list, a selection decision

is taken and the tool is then introduced into the company through a project, and potentially

tailored to the company-specific requirements (customizing). Furthermore, to increase

acceptance, initial use in a pilot project is recommended. If the pilot project reveals that the

selected tool does not provide the desired support, the tool selection must be repeated. If no

tool meets the requirements exactly, the process can be adjusted instead of a tool.

Tool selection according to [RuSo2009]:

▪ Launch a tool selection project.

▪ Define rough selection criteria by formulating basic requirements.

▪ Perform the rough selection (long list) to identify the first potential systems.

▪ Refine the catalog of criteria on the basis of new and refined requirements for the

tool.

▪ Conduct a fine selection (short list), up to a favored software candidate.

▪ Optional: If no tool meets requirements precisely, the software application must be

adapted (customized).

▪ In order to strengthen the acceptance in the company and to eliminate possible last

concerns, a pilot project is then launched.

Tip: Annex B contains some useful criteria for tool selection based on the requirements

management plan.

11.3 Data exchange between requirements management tools

The import and export of requirements, attributes, meta-information, links, and associated

views is necessary, for example, to support collaboration with other departments, partners,

and suppliers who use tools from other providers. Such functions are also required if

migrations from one tool to another are planned.

In most requirements management tools, requirements and their relationships to one

another are placed in manufacturer-specific (proprietary) structures. This means that a

simple exchange between two requirements management tools from different

manufacturers is generally not possible without a lot of effort (even if the requirements

information model is identical).

The Object Management Group (see [OMG2013]) has defined the industry standard

Requirements Interchange Format (ReqIF). This allows requirements artifacts and meta-

information to be exchanged between tools from different manufacturers. It is used

primarily at the interface between the customer and the supplier. In addition to the exchange

format, a procedure is also defined.

Requirements Management | Handbook | © IREB 212 | 262

The initiative comes from the automotive industry, which features close collaboration

between suppliers and the automotive manufacturers, whereby precisely defined versions

of requirements artifacts have to be exchanged.

Figure 48: Example of an exchange of requirements artifacts between two organizations

(simplified according to [OMG2013])

ReqIF is an open, non-proprietary format. It is stored in XML documents. ReqIF thus enables

the exchange of requirements between different tools and partners. However, the

prerequisite for this is a standardized, aligned data model for the exchange (e.g., a

requirements information model).

ReqIF therefore offers the following advantages for data exchange here:

▪ The partners do not have to work with the same tool, which means that the suppliers

do not need to have a separate Requirements Engineering tool for each customer.

▪ With ReqIF, collaboration between companies can be improved by applying

requirements management methods across companies.

▪ Requirements can be transferred within an organization, even across tool boundaries.

▪ With ReqIF, requirements, with all attributes and meta-information, can be

exchanged without loss, unlike document exports in Word, PDF, etc.

Figure 48 shows the process of an exchange of requirements artifacts between

organizations. The specification of the requirements ("Customer requirements specification"

in organization A, and "System requirements specification" in organization B) is versioned

using a repository.

The tools have interfaces for exporting and importing the requirements. Using snapshots

from the specification, content is transferred between the tools. The specification of how

the exact data exchange is to take place within the scope of the project is documented in

the requirements management plan.

Requirements Management | Handbook | © IREB 213 | 262

11.4 Content for the requirements management plan

From a tool perspective, in the requirements management plan (see also Annex A), you

define how you want to use requirements management tools in your specific context. You

can base the description on the previously described chapters. Document what you want to

support or map, in which form, and using which tool, for example:

1. Chapter 2 (Requirements Information Model): DOORS® is to be used to describe all of

the textual requirements in the requirements information model and the levels of

detail defined there. The model-based requirements (class diagrams, BPMN

diagrams) are to be described in Visual Paradigm.

2. Chapter 3 (Assigning atrributes and views for requirements): DOORS® is to be used to

create and maintain the attributes defined for the textual requirements defined in

Chapter 2. All user-defined views are to be defined in DOORS® and assigned using

role-based access rights.

In addition to the requirements information model, the techniques to be used for

prioritization, the version and change management, the implementation of traceability, the

selected procedure for variant management, the actual Requirements Engineering process,

and the reporting, the requirements management plan also describes which of these

techniques or activities are to be supported by a tool and by which tool.

Furthermore, the requirements management plan should also describe the parties between

which requirements have to be exchanged, and how this exchange is to take place using

defined imports and exports (see Section 11.3).

11.5 Literature for further reading

[OMG2013] OMG: Requirements Interchange Format (ReqIF). Object Management Group,

Version 1.1., 2013, https://www.omg.org/spec/ReqIF/1.1/PDF.

[Pohl2010] K. Pohl: Requirements Engineering – Foundations, Principles, and Techniques.

Springer, 2010.

[RuSo2009]] C. Rupp & die SOPHISTen: Requirements-Engineering und –Management.

Hanser, 5th edition, updated and extended, 2009 (available in German only).

https://www.omg.org/spec/ReqIF/1.1/PDF

Requirements Management | Handbook | © IREB 214 | 262

12 List of Abbreviations
AC actual cost

AHP analytical hierarchy process

BAC budget at completion

CAB Change Advisory Board

CCB Change Control Board

CMMI capability maturity model integration

CPRE Certified Professional for Requirements Engineering

CR change request

DIN Deutsches Institut für Normung (German Institute for Standardization)

EV earned value

FDD feature-driven development

GQM goal, question, metric

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IREB International Requirements Engineering Board

ISO International Organization for Standardization

IT information technology

ITIL IT Infrastructure Library

CPI continuous process improvement

MMP minimal marketable product

MVP minimal viable product

PDCA plan, do, check, act

PV planned value

RE Requirements Engineering

RAC responsible, accountable, consulted, informed

RIM requirements information model

RM requirements management

RMP requirements management plan

TBD to be determined

TBR to be resolved

UML Unified Modeling Language

XP Extreme Programming

Requirements Management | Handbook | © IREB 215 | 262

13 Bibliography

[AgileManifesto] Manifesto for Agile Software Development. Available at

http://agilemanifesto.org/. Last visited March 2024.

[Ande2010] David J. Anderson: Kanban. Successful Evolutionary Change for Your

Technology Business. Blue Hole Press, Sequim, Washington 2010.

[BaWe1984] Victor R. Basili, David M. Weiss: A methodology for collecting valid software

engineering data. Software Engineering, IEEE Transactions on Software

Engineering (1984): 728–738.

[Basi1992] V.R. Basili: Software Modeling and Measurement: The Goal Question Metric

Paradigm. Computer Science Technical Report Series, CS-TR-2956

(UMIACS-TR-92-96), University of Maryland, College Park, MD, September

1992.

[BBHK2014] Braun, P.; Broy, M.; Houdek, F.; Kirchmayr, M.; Müller, M.; Penzenstadler, B.;

Pohl, K.; Weyer, T.: Guiding Requirements Engineering for software-intensive

embedded systems in the automotive industry. Computer Science - R&D 29(1):

(2014).

[BCR] Victor R. Basili, Gianluigi Caldiera, H. Dieter Rombach: The Goal Question

Metric Approach. Tutorial, University of Maryland,

http://www.cs.umd.edu/~mvz/handouts/gqm.pdf. Last visited March 2024.

[Beck2000] Kent Beck: Extreme programming explained. Addison-Wesley, Upper Saddle

River, 2000.

[Beim2012] Martin Beims: IT-Service Management mit ITIL®: ITIL® Edition 2011, ISO

20000:2011 und PRINCE2® in der Praxis, Carl Hanser Verlag GmbH & Co. KG,

3rd updated edition, 2012 (available in German only).

[BSB2008] Christoph Bommer, Markus Spindler, Volkert Barr: Softwarewartung –

Grundlagen, Management und Wartungstechniken. Dpunkt.verlag, 2008

(available in German only).

[Bout2011] E. Boutkova: Experience with Variability Management in Requirement

Specifications. In: D.E. Almeida, T. Kishi, C. Schwanninger, I. John, and K.

Schmid (eds): Software Product Lines – 15th International Conference (SPLC),

Munich, 2013.

[BoHo2011] E. Boutkova, F. Houdek: Semi-automatic identification of features in

requirement specifications. In: Proceedings of the 19th International

Requirements Engineering Conference, Trento, Italy, September 2011.

[BWJ2013] Franz J. Brunner, Johann Wappis, Berndt Jung: Null-Fehler-Management:

Umsetzung von Six Sigma, Carl Hanser Verlag GmbH & Co. KG; edition: 4,

revised and extended edition, 2013 (available in German only).

[BLP2004] S. Bühne, K. Lauenroth, K. Pohl: Why is it not Sufficient to Model Requirements

Variability with Feature Models. In: Aoyama, M.; Houdek, F.; Shigematsu, T.

http://agilemanifesto.org/
http://www.cs.umd.edu/~mvz/handouts/gqm.pdf

Requirements Management | Handbook | © IREB 216 | 262

(eds) Proceedings of Workshop: Automotive Requirements Engineering

(AURE04). IEEE Computer Society Press, Los Alamitos 2004.

[CMMI] https://insights.sei.cmu.edu/library/cmmi-for-development-version-13/. Last

visited March 2024.

[CNAT2011] J.M. Carillo de Gea, J. Nicolás, J.L.F. Alemán, A. Toval, C. Ebert, A. Vizcaíno:

Requirements Engineering Tools. In: IEEE Software, July/August 2011.

[CNAT2012] J.M. Carillo de Gea, J. Nicolás, J.L.F. Alemán, A. Toval, C. Ebert, A. Vizcaíno:

Requirements Engineering Tools: Capabilities, survey, and assessment. In:

Information and Software Technology, Volume 54, Issue 10, October 2012.

[CKS2011] Mary Beth Chrissis, Mike Konrad, Sandy Shrum: CMMI for Development:

Guidelines for Process Integration and Product Improvement, Addison Wesley,

2011.

[Cock1997] A. Cockburn: Surviving Object-Oriented Projects. Addison-Wesley, 1997.

[Cock2001] A. Cockburn: Writing Effective Use Cases. Addison-Wesley, 2001 (available in

German only).

[Cock2004] A. Cockburn: Crystal Clear, A Human-Powered Methodology for Small Teams.

Addison-Wesley, 2004.

[Cock2006] A. Cockburn: Agile Software Development. Addison-Wesley, 2006.

[ClNo2007] P. Clements, L. Northrop: Software Product Lines: Practices and Patterns.

Addison Wesley, Boston, 6th Edition, 2007.

[CHW1998] J. Coplien, D. Hoffmann, D. Weiss: Commonality and Variability in Software

Engineering. In: IEEE Software, Volume 15, Issue 6, 1998.

[CzEi2000] K. Czarnecki, U.W. Eisenecker: Generative Programming: Methods, Tools, and

Applications. Addison Wesley, 2000.

[CHQW2022] Thorsten Cziharz, Peter Hruschka, Stefan Queins, Thorsten Weyer: Handbook

Requirements Modeling, Education and Training for IREB Certified

Professional for Requirements Engineering, Advanced Level Requirements

Modeling, IREB, Version 2.0.0, July 1, 2022.

[Davi2003] A. Davis: The Art of Requirements Triage. IEEE Computer, Volume 36, Issue 3,

2003.

[Davi2005] Alan M. Davis: Just Enough Requirements Management – Where Software

Development Meets Marketing. Dorset House Publishing, 2005.

[DeMa1982] Tom DeMarco: Controlling Software Projects: Management, Measurement,

and Estimation. Prentice Hall/Yourdon Press, 1982.

[DeMa2009] Tom DeMarco: Software Engineering: An Idea Whose Time Has Come and

Gone? IEEE Software, July/August 2009.

[Demi1982] W.E. Deming: Out of the Crisis. Massachusetts Institute of Technology,

Cambridge 1982.

https://insights.sei.cmu.edu/library/cmmi-for-development-version-13/

Requirements Management | Handbook | © IREB 217 | 262

[DIN 61508] IEC DIN EN 61508-2 Functional safety of electrical/electronic/programmable

electronic safety-related systems. VDE Verlag, 2002.

[DIN69900] DIN 69900 Project management – Project network techniques; Descriptions

and Concepts, 2009.

[Ebel2014] N. Ebel: ITIL®(R) 2011 Edition: Grundlagen und Know-how für das IT Service

Management und die ITIL®(R)-Foundation-Prüfung, dpunkt.verlag GmbH, 1st

edition, 2014 (available in German only).

[Eber2012] C. Ebert: Systematisches Requirements Engineering. Dpunkt, 4th edition, 2012

(available in German only).

[Ecks2004] J. Eckstein: Agile Software Development in the Large. Dorset House

Publishing, 2004.

[Ecks2010] J. Eckstein: Agile Software Development with Distributed Teams. Dorset

House Publishing, 2010.

[Gabl2014a] Springer Gabler Verlag (ed.), Gabler Wirtschaftslexikon, keyword:

"Produktfamilie", online:

http://wirtschaftslexikon.gabler.de/Archiv/135585/produktfamilie-v5.html

(status: November 11, 2014).

[Gabl2014b] Springer Gabler Verlag (ed.), Gabler Wirtschaftslexikon, keyword:

"Produktlinie", online:

https://wirtschaftslexikon.gabler.de/definition/produktlinie-43488/version-

176677 , available in German only. Last visited March 2024.

[GoFi1994] O.C.Z. Gotel, A.C.W Finkelstein: An Analysis of the Requirements Traceability

Problem. Proceedings of IEEE International Conference on Requirements

Engineering, 1994.

[Glin2014] Martin Glinz: A Glossary of Requirements Engineering Terminology. Version 1.6

May 2014.

[Herr2014] A. Herrmann: Leichte Dellen - Wenn agil nicht geht: Feature Driven

Development. iX 9/2014, pp. 110–113 (available in German only).

[HJD2011] E. Hull, K. Jackson, J. Dick: Requirements Engineering. Springer, 3rd edition,

2011.

[HuMa2011] Thomas Hummel, Christian Malorny: Total Quality Management: Tipps für die

Einführung. Carl Hanser Verlag GmbH & Co. KG; edition: 4, completely revised

edition, 2011 (available in German only).

[IEEE830] IEEE: IEEE 830-1998 Recommended Practice for Software Requirements

Specifications, 1998.

[IEEE1233] IEEE: IEEE Standard 1233 Guide for Developing of System Requirements

Specifications, 1998.

[IREB2015] IREB: Syllabus IREB Certified Professional for Requirements Engineering –

Foundation Level, Version 2.2, 2015.

http://wirtschaftslexikon.gabler.de/Archiv/135585/produktfamilie-v5.html
https://wirtschaftslexikon.gabler.de/definition/produktlinie-43488/version-176677
https://wirtschaftslexikon.gabler.de/definition/produktlinie-43488/version-176677

Requirements Management | Handbook | © IREB 218 | 262

[ISO9000] ISO: ISO 9000-1 Quality systems – Model for Quality Assurance in Design,

Development, Production, Installation and Servicing. International

Organization for Standardization (ISO), 1994.

[ISO9241] ISO: DIN EN ISO 9241 Ergonomics of human-system interaction.

[ISO12207] ISO: ISO/IEC 12207: 1995, Information Technology – Software life cycle

processes. International Organization for Standardization (ISO), 1995.

[ISO29148] ISO: ISO/IEC/IEEE 29148:2018: Systems and software engineering – Life cycle

processes – Requirements engineering, 2018.

[ISO14102] ISO/ IEC 14102:1995 Information Technology – Evaluation and Selection of

CASE Tools, 1995.

[ISO15288] ISO/IEC 15288:2008 Systems and software engineering — System life cycle

processes, 2008.

[ISO24766] ISO: ISO/IEC TR 24766:2009: Information technology – Systems and software

engineering – Guide for requirements engineering tool capabilities.

International Organization for Standardization (ISO), 2009.

[ISO25010] ISO: ISO/IEC 25010:2011 Systems and software engineering — Systems and

software Quality Requirements and Evaluation (SQuaRE) — System and

software quality models, 2011.

[ISO29110] ISO: ISO 29110 Lifecycle process standard for Very Small and Medium Entities

(VSME), 2011.

[Oran2013] Foundations of IT Service Management with ITIL®2011. 2nd Edition

ITILyaBrady, 2013 (Kindle Edition).

[JSB2011] I. Jacobson, I. Spence, K. Bittner: Use Cases 2.0. Ivar Jacobson International,

2011.

[KCHN1990] C. Kang, S. Cohen, J. Hess, W. Novak, A. Peterson: Feature-Oriented Domain

Analysis (FODA) – Feasibility Study. Software Engineering Institute, 1990.

[KKLK1998] K. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh: FORM: A Feature-Oriented

Reuse Method with Domain-Specific Reference Architectures. Annals of

Software Engineering, No. 5, 1998.

[KLD2002] K. Kang, J. Lee, P. Donohoe: Feature-Oriented Product Line Engineering. IEEE

Software 19(4): 2002.

[Kano1984] N. Kano: Attractive Quality and Must-be Quality. Journal of the Japanese

Society for Quality Control, H. 4, 1984.

[KaRy1997] J. Karlsson, K. Ryan: A Cost-Value Approach for Prioritizing Requirements.

IEEE Software 14, No. 5, 1997.

[Kerz2003] H. Kerzner: Project Management. A Systems Approach to Planning, Scheduling,

and Controlling. John Wiley & Sons, 2017.

Requirements Management | Handbook | © IREB 219 | 262

[Kneu2007] Ralf Kneuper: CMMI: Improving Software and System Development Processes

Using Capability Maturity Model Integration. Rocky Nook, 1st edition, 2009.

[KoBe2013] H.-P. Korn and J.P. Berchez (eds.): Agiles IT-Management in großen

Unternehmen. Symposion Publishing, 2013 (available in German only).

[Küpp2005] H.-U. Küpper: Controlling: Konzeption, Aufgaben, Instrumente. Schäffer-

Poeschel, 4th edition, 2005 (available in German only).

[KuSt2001] K. Kurbel, E. Stickel: Informationsmanagement. Oldenbourg

Wissenschaftsverlag, 2001 (available in German only).

[Leff2011] D. Leffingwell: Agile Software Requirements, Lean Requirements Practices

for Teams, Programs, and the Enterprise. Addison-Wesley Professional, 2011.

[LeWi2000] D. Leffingwell, D. Widrig: Managing Software Requirements – A Unified

Approach. Reading, Addison-Wesley, 2000.

[LoKa1995] P. Loucopoulos, V. Karakostas: System Requirements Engineering. McGraw-

Hill, 1995.

[MGP2009] P. Mäder, O. Gotel, I. Philippow: Getting Back to Basics: Promoting the Use of a

Traceability Information Model in Practice. Proceedings of 5th International

Workshop on Traceability in Emerging Forms of Software Engineering

(TEFSE2009), Vancouver, Canada, May 2009.

[MJZC2013] P. Mäder, P.L. Jones, Y. Zhang, J. Cleland-Huang: Strategic Traceability for

Safety-Critical Projects. IEEE Software, Volume 30, Issue 3, May/June 2013.

[Mois2002] F. Moisiadis: The fundamentals of prioritizing requirements. Systems

Engineering, Test & Evaluation Conference, Sydney, October 2002.

[Nebu2014] Nebulon Pty. Ltd: Feature Driven Development.

http://www.featuredrivendevelopment.com/. Last visited March 2024.

[Nuse2001] B. Nuseibeh: Weaving the Software Development Process between

Requirements and Architecture. Proceedings of ICSE2001 Workshop STRAW-

01, Toronto, May 2001.

[OMG2013] OMG: Requirements Interchange Format (ReqIF). Object Management Group,

Version 1.1., 2013, http://www.omg.org/spec/ReqIF/1.1/. Last visited March 2024.

[PaFe2002] Stephen R. Palmer, John M. Felsing: A Practical Guide to the Feature-Driven

Development. Prentice Hall International, 2002.

[Patt2008] Jeff Patton: The new user story backlog is a map, 10/08/2008

https://www.jpattonassociates.com/the-new-backlog/. Last visited March

2024.

[PHAB2012] Pohl, K., Hönninger, H., Achatz, R., Broy, M. (Eds.): Model-Based Engineering of

Embedded Systems - The SPES 2020 Methodology, Springer 2012.

[Pich2014] Roman Pichler: The Product Vision Board,

https://www.romanpichler.com/tools/product-vision-board/. Last visited

March 2024.

http://www.featuredrivendevelopment.com/
http://www.omg.org/spec/ReqIF/1.1/
https://www.jpattonassociates.com/the-new-backlog/
https://www.romanpichler.com/tools/product-vision-board/

Requirements Management | Handbook | © IREB 220 | 262

[PMI2013] PMI: Project Management Book of Knowledge (PMBOK). Project Management

Institute, 5th Ed., 2013.

[Pohl1996] K. Pohl: Process-Centered Requirements Engineering. John Wiley Research

Science Press, 1996.

[Pohl2010] K. Pohl: Requirements Engineering – Fundamentals, Principles, Techniques.

Springer, 2010.

[PBL2005] K. Pohl, G. Böckle, F. van der Linden: Software Product Line Engineering –

Foundations, Principles, and Techniques. Springer, 2005.

[PoRu2015] K. Pohl and Chris Rupp: Requirements Engineering Fundamentals - A Study

Guide for the Certified Professional for Requirements Engineering Exam -

Foundation Level - IREB compliant. Rocky Nook, 2015.

[PoPo2003] Mary Poppendieck, Tom Poppendieck: Lean Software Development. Addison

Wesley, 2003.

[PriEsT] PriEsT, http://sourceforge.net/projects/priority/. Last visited March 2024.

[RBSP2002] M. Riebisch, K. Böllert, D. Streitferdt, and I. Philippow: Extending Feature

Diagrams with UML Multiplicities. in Proc. World Conf. Integrated Design and

Process Technology (IDPT), 2002.

[Ries2011] Eric Ries: The Lean Startup: How Constant Innovation Creates Radically

Successful Businesses. Penguin, 2011.

[RoRo2014] S. Robertson, J. Robertson: Mastering the Requirements Process – Getting

Requirements Right. Addison-Wesley, 3rd Edition, 2014.

[RuSo2009] C. Rupp & die SOPHISTen: Requirements-Engineering und –Management.

Hanser, 5th edition, updated and extended, 2009 (available in German only).

[Saat1990] Thomas L. Saaty: Multicriteria decision making – the analytic hierarchy

process. Planning, priority setting, resource allocation. 2nd edition, RWS

Publishing, Pittsburgh 1990.

[Schi2001] B. Schienmann: Kontinuierliches Anforderungsmanagement. Prozesse –

Techniken – Werkzeuge. Addison-Wesley, 2001 (available in German only).

[SHT2006] P.-Y. Schobbens, P. Heymans, J.C. Trigaux: Feature Diagrams: A Survey and a

Formal Semantics. Proceedings of the 14th International Requirements

Engineering Conference (RE’06), September 2006.

[ScBe2001] Ken Schwaber, Mike Beedle: Agile Software Development with SCRUM.

Prentice Hall, 2001.

[ScSu2013] Ken Schwaber, Jeff Sutherland: The Scrum Guide, July 2013

http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf. Last

visited March 2024.

[SEI1999] Carnegie Mellon SEI: The Capability Maturity Model, Guidelines for Improving

the Software Process. Addison Wesley, 1999.

http://sourceforge.net/projects/priority/
http://www.scrumguides.org/docs/scrumguide/v1/Scrum-Guide-US.pdf

Requirements Management | Handbook | © IREB 221 | 262

[SEI2010] Carnegie Mellon SEI: CMMI for Services, Version 1.3, Improving processes for

providing better services. 2010.

[SEI2011] SEI: CMMI® for Development, Version 1.3 CMU/SEI-2010-TR-033. Available at

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_152

87.pdf. Last visited March 2024.

[SMK2013] S. Siraj, L. Mikhailov, J.A. Keane: PriEsT: an interactive decision support tool to

estimate priorities from pairwise comparison judgments. International

Transactions in Operational Research, 2013.

[SoSa1997] I. Sommerville, P. Sawyer: Requirements Engineering: A Good Practice Guide.

John Wiley & Sons, 1997.

[SpLi2007] A. Spillner, T. Linz: Basiswissen Softwaretest – Aus- und Weiterbildung zum

Certified Tester. Dpunkt.verlag, 3rd edition, 2007 (available in German only).

[SuSc2013] J. Sutherland, K. Schwaber: Scrum Guide, July 2013, available at

www.scrum.org.

[Syra2014] Ingo Geppert, Torsten Lodderstedt: Projektanforderungsmanagement - Eine

pragmatische Lösung für effiziente Toolunterstützung. Projektmanagement,

edition 4,

https://www.syracom.de/fileadmin/user_upload/Downloads/Veroeffentlichung

en/Projektanforderungsmanagement.pdf. Last visited March 2024. Available

in German only.

[Tava2012] Serkan Tavasli: Six Sigma Performance Measurement System:

Prozesscontrolling als Instrumentarium der modernen Unternehmensführung.

Deutscher Universitätsverlag, 2012 (available in German only).

[USCo2002] US Congress: Sarbanes-Oxley Act. Washington, USA, 107th Congress of the

United States of America, 23.01.2002.

[VanL2009] A. van Lamsweerde: Requirements Engineering – from System Goals to UML

Models to Software Specifications. John Wiley and Sons, 2009.

[VDI2001] VDI: VDI guideline 2519 sheet 1 - The procedure for the creation of tender and

performance specifications, 2001.

[Wann2013a] Roland Wanner: Earned Value Management: The Most Important Methods and

Tools for an Effective Project Control. CreateSpace Independent Publishing

Platform, 2013.

[Wann2013b] Roland Wanner: Earned Value Management: So machen Sie Ihr

Projektcontrolling noch effektiver Taschenbuch. CreateSpace Independent

Publishing Platform, 3rd edition, 2013 (available in German only).

[Wieg2005] Karl Wiegers: Software Requirements. Microsoft Press Deutschland, 1st

edition, 2005.

[WiBe2013] K. Wiegers, J. Beatty: Software Requirements. 3rd Edition. Microsoft Press,

2013.

https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
https://resources.sei.cmu.edu/asset_files/TechnicalReport/2010_005_001_15287.pdf
http://www.scrum.org/
https://www.syracom.de/fileadmin/user_upload/Downloads/Veroeffentlichungen/Projektanforderungsmanagement.pdf
https://www.syracom.de/fileadmin/user_upload/Downloads/Veroeffentlichungen/Projektanforderungsmanagement.pdf

Requirements Management | Handbook | © IREB 222 | 262

[Youn2014] R. Young: The Requirements Engineering Handbook, Artech House, Boston,

2004.

[Zieg1998] K. Ziegbein: Controlling. Kiehl Friedrich Verlag, 6th edition, 1998.

Requirements Management | Handbook | © IREB 223 | 262

Index

1
100-dollar technique .. 76

A
Abstraction level .. 29

Ad-hoc prioritization technique 70

Agile development ... 204

Agile Manifesto ... 204

Analytical hierarchy process 82

Analytical prioritization technique 70

Attribute ..39

Attribute schema ..45

B
Baseline ...95

Basic factor ... 77

Binding time of a variant 150

Branching .. 96

C
Change Advisory Board 105

Change committee .. 105

Change Control Board .. 105

Change management 99, 105

Change request .. 108, 192

Change requirement .. 108

CMMI .. 198

Condensed view ..58

Configuration management 94

Constraint ... 25

Continuous process improvement................... 199

Coverage analysis .. 112

D
Degree of completion ... 262

Deming cycle .. 199

E
Earned value analysis ... 262

Excitement factor ..77

Explicit documentation of traceability 120

F
Feature ... 151, 157

Feature modeling ... 157

Functional requirement .. 25

G
Goal, question, metric .. 181

H
Heavyweight Requirements Engineering 191

I
Impact analysis ... 112

Implicit documentation of traceability 120

Iteration .. 206

Iterative Requirements Engineering 190

K
Kano model...77

L
Lightweight Requirements Engineering 191

N
Non-functional requirement 26

P
PDCA ... 199

Performance factor ..77

Planning poker ... 73

Requirements Management | Handbook | © IREB 224 | 262

Post-requirements-specification traceability

 .. 113

Pre-requirements-specification traceability 113

Prioritization ... 65

Prioritization matrix according to Wiegers 79

Prioritization technique ... 70

Priority... 64

Process key figure .. 170

Product backlog ... 206

Product family .. 144

Product key figure .. 170

Product line .. 144

Projective view ...58

Q
Quality requirement .. 25

R
Ranking ... 71

Release management ...95

Reporting .. 166

Requirements artifact .. 23

Requirements attribute ...39

Requirements branch .. 97

Requirements change ... 108

Requirements configuration93

Requirements Engineer .. 9

Requirements engineering 13

Requirements engineering process 187

Requirements Information Model 24, 31

Requirements landscape 24

Requirements management 13

Requirements management plan 9, 16

Requirements Manager .. 9

Requirements triage .. 70

S
Scrum.. 205

Selective view ... 58

Single-criteria classification 72

Source analysis ... 112

Sprint ... 206

Sprint backlog ... 206

Status ... 87

Story maps ... 212

T
Tool ... 215

Top-ten technique ... 72

Traceability .. 111, 112

Traceability graph ... 126

Traceability matrix .. 123

Traceability strategy ... 130

Traceability table .. 125

Twin peaks model ... 29

Two-criteria classification..................................... 74

U
Upfront requirements elicitation....................... 190

User story ...207

V
Value benefit analysis ... 262

Variability .. 145

Variant ... 146

Variant Management ... 144

Variation point .. 145

Version ... 88

Version control ... 86

Requirements Management | Handbook | © IREB 225 | 262

Annex A: Template for a requirements

management plan

As mentioned in the introduction to our handbook for IREB Certified Professional for

Requirements Engineering module "Requirements Modeling", the requirements manager

must plan the Requirements Engineering process at the beginning of a project. The

requirements manager documents the results of these considerations in a requirements

management plan (RMP). Over the course of this book, we have discussed the decisions

that have to be taken and, using a case study, created excerpts from an example

requirements management plan. As a summary, this annex now presents a template for a

requirements management plan, the respective chapter headings, and a short description

for each chapter. As the requirements manager, you can create your requirements

management plan according to this schema.

2.1.0 | April 5, 2024

Requirements Management Plan for

<your project>

<Your name>

Based on: IREB CPRE

Requirements Management

Practitioner | Specialist

Requirements Management | Handbook | © IREB 227 | 262

Table of contents

1 The Requirements Engineering and requirements management process

1.1 Requirements Engineering and requirements management tools

1.2 Requirements Information Model

1.3 Attribute Schema

1.4 Prioritization

1.5 Traceability

1.6 Views and Reports

1.7 Versioning

1.8 Change Process

1.9 Variant Management

Requirements Management | Handbook | © IREB 228 | 262

1 The Requirements Engineering and

requirements management process

In this chapter, define the process that you want to use to elicit, document, validate,

negotiate, and manage requirements. To do so, define the following parameters:

▪ Timing of the elicitation (upfront or iterative)

▪ Level of detail of the documentation, that is, the highest level of detail used for the

specification (with the two extremes, heavyweight versus lightweight specification)

▪ Incorporation of changes, in particular: change request versus product backlog

▪ Allocation of responsibility

Document the process as an activity diagram, a RACI matrix, or Gantt diagram, for example.

Furthermore, document how the Requirements Engineering process will be monitored (e.g.,

the report and key figures used). Actions for process improvement can also be planned here,

for example Lessons Learned analyses after the end of the project.

!
For more details about the content, see Chapter 9 of the handbook.

1.1 Requirements Engineering and requirements management tools

Define which tool or tools are to be used in your project to support the Requirements

Engineering process. Alternatively, the tools can be documented in a process model.

!

For more details about tools and in particular, tool selection, see Chapter 11 of the

handbook.

1.2 Requirements information model

In this chapter, define your requirements landscape and describe how you want to document

your requirements. This includes, for example:

▪ Which types of requirements do you want to consider?

▪ How do you want to document these requirements?

Requirements Management | Handbook | © IREB 229 | 262

▪ To what level of detail will you describe the requirements and which levels of detail

should be considered?

▪ Which level of formality must your requirements reach?

This information can be documented in the form of a requirements information model (RIM),

for example.

!
For more details about the content, see Chapter 2 of the handbook.

1.3 Attribute schema

In this chapter, document the attributes that your requirements should have, using, for

example, a table or information model.

▪ Name of the attribute

▪ Meaning

▪ Person responsible

▪ Permissible values

▪ Default value

▪ Mandatory field

▪ Dependencies between attributes

The attributes can differ depending on the requirement type or level of detail. The attribute

schema also includes attributes that are to be used for prioritizing the requirements.

!
For more details about the content, see Chapter 3 of the handbook.

1.4 Prioritization

At the beginning of the project, document the criteria that you want to use for prioritization.

Prioritization is generally necessary to allow you to work to a specific schedule or budget, or

in case of doubt, even both. In this chapter, define the criteria to be used to prioritize your

requirements, when they are to be prioritized, by whom, and the prioritization method to be

used.

Requirements Management | Handbook | © IREB 230 | 262

!
For more details about the content, see Chapter 4 of the handbook.

1.5 Traceability

In this chapter, document the traceability strategy: the traceability goal, usage strategy,

recording strategy, and the project-specific traceability model.

!
For more details about the content, see Chapter 6 of the handbook.

1.6 Views and reports

Based on the attributes for requirements described in Chapter 4, in this chapter, you can

define the required views and their content. Here, you also describe who (which

stakeholders) needs each respective view when and for what reason (goal). The content of

the view is created, for example, by filtering and sorting the requirements according to

attributes.

Here, you also define which (requirements-based) reports are to be created and when they

are to be created. For each report, the report recipient and the goal of the report are

documented, for example in tabular form. The derivation of report content from goals can

be represented graphically as a goal, question, metric tree. You also define how this content

can be determined or calculated from which attributes, and how the content is presented

(e.g., the specific graphical form of presentation). The specification can also be documented

in the form of a report template or view.

!
For more details about the content, see Chapters 3 and 8 of the handbook.

Requirements Management | Handbook | © IREB 231 | 262

1.7 Versioning

Here, document how you want to version requirements and documents in your project.

Define the statuses that a requirement may take, how the status transitions are to take

place, and who is permitted to change the status of requirements artifacts.

In addition, define the basis for creating a requirements baseline and what the creation of

such a baseline means for the subsequent requirements management process—for

example, following a requirements baseline, changes are accepted only via a change

management process. In the requirements management plan, define how you want to

handle changes in the project, how changes are to be documented, whether there is a

change committee, who makes up this change committee, etc.

!
For more details about the content, see Chapter 5 of the handbook.

1.8 Change process

In this chapter, describe your change management process and the associated documents.

Here, describe who can request changes to requirements, and how changes are requested,

evaluated, and decided—that is, by whom, when, and according to which criteria. The

change process can also include a template for a change request which defines the

information that has to be determined and documented for a change request.

!
For more details about the content, see Chapter 5 of the handbook.

1.9 Variant management

In this chapter, define whether and how you want to document variability—that is, variation

points, variants, and their dependencies—in your requirements. You can do this for example

in text form, as an orthogonal model, or as a feature model.

Requirements Management | Handbook | © IREB 232 | 262

!
For more details about the content, see Chapter 7 of the handbook.

Requirements Management | Handbook | © IREB 233 | 262

Annex B (tool selection)

In this annex, we describe some criteria for tool selection. These criteria originate on the one

hand from literature, and on the other hand, from the requirements management plan

created step by step in this handbook and the question of which of the activities, processes,

and techniques described in the requirements management plan should/could be supported

by a management tool. For this purpose, we have created a criteria catalog and applied it

using three completely different tools. These tools each represent one tool category. The

evaluations are based on the status at 2015 and become obsolete, of course, as soon as the

tools are developed further. Naturally, we do not recommend Microsoft Word ® and

Microsoft Excel ® for requirements management because there are many requirements

management activities that they do not support well.

We hope you enjoy studying these criteria and trying them out.

Table of contents

1 The challenges of introducing and using tools

2 Criteria for selecting a requirements management tool

3 Analyzing selected tools using the requirements management plan evaluation criteria

Requirements Management | Handbook | © IREB 234 | 262

1 The challenges of introducing and using

tools

Just like the introduction of any application, the introduction of a (new) requirements

management tool is a topic which, in addition to technical and methodological aspects, must

above all consider human aspects, as it is humans that will have to subsequently work with

the tool. In the long term, only an accepted tool that provides the user with a direct or

indirect benefit will be accepted and used correctly. When a requirements management tool

is introduced, social, cognitive, organizational, and corporate aspects must be taken into

account.

To illustrate this, we want to describe examples of some of the challenges of introducing a

tool. We have assigned these examples to the views introduced in [PoRu2011a].

Provider view

▪ Market position: For a company, the selection of the tool is generally a long-term

decision because the introduction of the tool often also necessitates organizational

changes. When a tool is selected, this creates a tie to the provider of the tool. If this

provider or the tool soon ceases to exist, good advice literally becomes expensive.

▪ Trends and updates: It may be desirable for the provider to support future trends and

offer these in the tool. However, following trends may also be undesirable if the

provider changes their strategy completely and decides to pursue, for example, only

agile procedures.

User view

▪ User acceptance: The tool must be available for many user groups to be able to

reflect the development cycle (marketing, development, finance department, etc.).

User acceptance is therefore extremely important to ensure that the tool is

subsequently used correctly. Not only must your work processes be supported, this

support must also be provided in an efficient and ergonomic way. In particular, the

tool must also be user-friendly.

Economic view

▪ The license model of the software must fit the usage profile and the cost structure of

the company.

▪ The operability of the software must be compatible on the one hand with the cost

structure, and on the other hand with the existing IT infrastructure of the company.

Requirements Management | Handbook | © IREB 235 | 262

Product view

▪ The capabilities of the software must satisfy the requirements of the tool. On the one

hand, this means that criteria of the requirements management plan (assignment of

attributes, view creation, traceability, reporting, etc.) relevant for you must be

fulfilled. On the other hand, it also means that the tool must deliver the required user

support in all areas. It is generally a misconception to think that the primary issue is

that a functionality must be supported, regardless of how this is done, and the user

will accept whatever is offered. Let us take the example of traceability: if the tool

supports the creation of traceability relationships between artifacts in principle, but

the creation of these relationships is not user-oriented and does not save the user

any time, these relationships will probably not be set or will only be set

unsatisfactorily. Given the number of (possible) functional and non-functional

requirements of the requirements management tool, it is difficult to impossible to find

the perfect tool. Therefore, you have to prioritize your selection criteria cleverly and

sacrifice only what is really unimportant.

Project view

▪ Adaptability: No two projects are the same. In the same way that the Requirements

Engineering process and the requirements documents have to be adapted to the size

and other properties of the project, the tool must also support this adaptation. If it

does not, it can only be used in some projects and not in others.

Process view

▪ The tool follows the process: Before the tool is selected, the process must be clear

and established in the company, based, for example, on an existing requirements

management plan for the company. The tool helps only to support an existing

process. If there is no defined process, it is difficult to select a tool and this restricts

the possible subsequent requirements management procedures.

▪ Methodological knowledge: On its own, the use of a tool does not ensure that only

correct data or requirements are recorded. What it does do is support the recording

and maintenance of data. Therefore, when tools are used, it is essential that all

persons involved in the development process are sufficiently trained in documenting

requirements correctly.

▪ It must be possible to use the tool to map project-specific data models

(requirements information models). Prior standardization of the data models may be

necessary to ensure that tools can be exchanged.

Technical view

▪ Data exchangeability: In collaboration with other departments, partners, suppliers,

etc., data exchangeability is a particular challenge because the exchange between

heterogeneous requirements information models and different tools must be

ensured. It must also be possible to export and import data for migration to a new tool

or tool release.

Requirements Management | Handbook | © IREB 236 | 262

2 Criteria for selecting a requirements

management tool

Just like the introduction of any software in a company, the selection of a requirements

management tool raises the question of the requirements. What should the tool support?

How should the integration take place? Who should operate the software? Are there existing

systems that have to be replaced? Is a migration necessary? And so on.

Here, literature offers a number of helpful reference points, checklists, and questions that

can support you in introducing a requirements management tool ([PoRu2011a], [CNAT2011],

[CNAT2012], [ISO24766], [Eber2012]).

[PoRu2011a] proposes a view-based process for considering the requirements from all

relevant stakeholders for the tool (analog to introducing software).

▪ Provider view: Amongst other things, the provider view considers the market position

and the service options (in the sense of training, user support, company-specific

adjustments, etc.) that the tool provider offers. This view is necessary because the

introduction of tool support generally means a longer-term tie.

▪ User view: The user view considers the requirements that result from the view of the

different system users. These include, for example, requirements for role concepts,

multiple user capability, etc.

▪ Economic view: The economic view considers the entire costs as a full costing

required for the introduction and operation of the tool, and for the running costs for

licenses and support, etc.

▪ Product view: The product view considers the functionality that the tool to be

introduced requires in order to support requirements management. This includes, for

example, requirements for attribute assignment, creation of views, and traceability.

▪ Project view: The project view considers the extent to which the tool can support

future projects—for example, with regard to planning, reporting, etc.

▪ Process view: The process view considers requirements for the tool in terms of the

methodological support, for example, through suitable workflows. However, caution

must be taken here to ensure that it is not the tool that specifies the methodology.

▪ Technical view: The technical view considers requirements for operability, portability,

scalability, integration of, for example, test tools in an existing tool landscape, as well

as data exchange and data migration.

These views help you to define the requirements for your tool. Literature also offers

numerous checklists for tool selection, see [CNAT2011], [CNAT2012], [ISO24766],

[Eber2012].

In this section, we explicitly address the aspects of requirements management that must be

supported for your company or project. In selecting these aspects, we therefore

concentrate primarily on the points that should be considered in your requirements

management plan.

Requirements Management | Handbook | © IREB 237 | 262

In the previous chapters of this book, you have learned how to create a requirements

management plan.

You have either defined a specific plan for a project or an abstract plan for requirements

management in your company. To ensure that your requirements management plan is

supported in the best possible way, looking back over the previous chapters and your

requirements management plan, consider therefore, which criteria for tool selection are

particularly important to you and consider, for example, the following questions in your

evaluation:

▪ Does the tool support the implementation of your requirements information model?

▪ Are the different types of requirements supported?

▪ Are different requirements artifacts supported?

▪ Are different forms of presentation supported?

▪ Are different levels of detail supported?

▪ Can the requirements documented in the tool be exported in a structured and

readable form (e.g., as a requirements specification)?

▪ Does the tool support the creation of the required attributes and views?

▪ Are different attributes supported for each requirement type?

▪ Is the definition of value ranges for attributes supported?

▪ Can multiple attributes be selected?

▪ Can attribute value transitions be defined?

▪ Is the user supported with automatic values (e.g., date of creation, creator)

when entering information?

▪ Can default values be defined for attributes?

▪ Is there a differentiation between optional and mandatory attributes?

▪ Are dependencies between attributes supported?

▪ Can ad-hoc views be created?

▪ Can views created be saved?

▪ Can views be restricted using role concepts?

▪ Does the tool support the prioritization of requirements artifacts?

▪ Are ad-hoc prioritization methods supported?

▪ Are analytical prioritization methods supported?

▪ Can a history be maintained for prioritization decisions?

▪ Does the tool support version control for requirements?

▪ Are new versions of artifacts created automatically?

▪ Can different versions be compared with one another?

▪ Can the change reason be documented and traced?

▪ Do changes to attributes lead to new versions of the artifact?

▪ Can individual attributes be removed from the versioning?

▪ Is it possible to roll back to old requirements versions?

▪ Can requirements configurations be created?

▪ Is it possible to roll back to old requirements configurations?

▪ Is a comparison of requirements configurations possible?

▪ Can requirements baselines be created?

Requirements Management | Handbook | © IREB 238 | 262

▪ Is it possible to roll back to old requirements baselines?

▪ Is a comparison of requirements baselines possible?

▪ Does the tool support change management?

▪ Can a change management process be defined?

▪ Are change request templates offered or supported?

▪ Can change requests be created and processed based on roles?

▪ Is the processing and evaluation of change requests supported?

▪ Can the change requests be subsequently placed in a relationship to the

requirements to be changed through linking?

▪ Does the tool support the traceability strategy of the requirements management

plan?

▪ Is traceability between artifacts supported?

▪ Can different relationship types be created?

▪ Can relationship types to artifacts be restricted to prevent all relationship

types being used in an uncontrolled way?

▪ Is linking to predecessor and successor artifacts (goals and test cases)

possible (keyword: tool integration)?

▪ Is a role-based maintenance of traceability relationships supported or can any

user create, change, or remove all relationships?

▪ Is traceability between textual and model-based artifacts supported (where

applicable, on a cross-tool basis)?

▪ How can traceability relationships be presented (matrix, table, graph, etc.)?

▪ Are impact analyses possible for changes, presenting the predecessor and

successor artifacts to the user?

▪ Over how many levels is an impact analysis possible?

▪ Can evaluations of traceability relationships be created (e.g., number of

relationships between test cases and requirements to the number of test

cases and requirements)?

▪ Does the tool support the documentation of variability?

▪ Is the explicit documentation of variability supported?

▪ Is the implicit documentation of variability supported?

▪ Are relationships between variation points and variants supported?

▪ Is feature modeling supported?

▪ Are orthogonal traceability models supported?

▪ Is the derivation of specific products from the defined variability supported?

▪ Is it possible to search for variants and variation points?

▪ Does the tool support reporting as part of requirements management?

▪ Are there templates for defining reports?

▪ Can own reports be created?

▪ Is automated creation of reports (e.g., at certain points in time) supported?

▪ Can reports be exported, for example as a PDF file?

▪ Can reports be sent automatically?

▪ Can reports be printed?

Requirements Management | Handbook | © IREB 239 | 262

▪ Does the tool support the definition of Requirements Engineering processes?

▪ Can workflows be defined for the defined Requirements Engineering activities

(e.g., documentation, check, acceptance)?

▪ Is the definition of roles, responsibilities, and (user) rights supported?

▪ Can company-wide process models, which are adapted in individual projects,

be mapped?

▪ Is parallel and role-based work supported?

▪ Are open item lists (and tasks) supported to document unclear points and

tasks and assign them to specific persons?

▪ Can decisions be documented (e.g., decision logs)?

▪ Can Requirements Engineering processes be checked (target/actual

comparison for process conformity)?

▪ Does the tool support agile methods?

▪ Are storyboards and Kanban boards supported?

▪ Are burndown charts supported?

▪ Are product backlogs and sprint backlogs supported?

▪ Are retrospectives supported?

Think about which of these points are relevant for you and weight the points for your project

for tool introduction. Based on the requirements management plan, you can create a

structured question list for your tool selection.

Using this list, evaluate the selected tools in terms of the requirements management

functions to be supported. The important thing is that the tool satisfies your Requirements

Engineering processes.

Requirements Management | Handbook | © IREB 240 | 262

3 Analyzing selected tools using the

requirements management plan evaluation

criteria

In this chapter, based on the criteria introduced in the previous section, we will perform an

example tool evaluation. To do this, we have intentionally dedicated our example to three

very different classes of tools.

▪ Standard office applications

▪ Systems engineering tools

▪ Requirements management tools

It is not our intention to look closely at the actual result, and particularly not to create an

independent evaluation of requirements management tools. Instead, we want to give you an

insight into how these criteria can be applied and used for tool selection.

In the class of standard office applications, we will look at the most widespread tool, which is

used worldwide to record and subsequently manage probably more than half of all

requirements. Even though these applications by far do not support the required properties

of requirements management tools mentioned at the beginning [PoRu2011a] (Section 9.3).

Nevertheless, this type of documentation and management, with some methodological and

organizational guidelines for assigning attributes, versioning, and traceability, is better than

no documentation.

The massive advantage of these applications lies in the fact that they are widespread, that

is, the initial existence, the existing user acceptance, as well as the advantage that almost

everyone knows how to use these applications and the files can be exchanged easily

between parties involved via email. Word, for example, offers the advantage that

specifications can be structured exactly as required. With Excel, just a little knowledge also

allows you to create attributes and views. Compared to Word, Excel has the decisive

advantage that you can filter, sort, evaluate, etc. based on the defined attributes.

To create a versioning, you can also use smaller macros to make life easier so that you can

create new versions of a requirements artifact at the push of a button. Figure 49 presents an

example of an Excel-based requirements list with different attributes. Here, the line

highlighted gray reflects an old version of a requirement which is presented below as a

current and revised version.

Requirements Management | Handbook | © IREB 241 | 262

Figure 49: Screenshot of an Excel-based requirements list

However, creating structures and hierarchies is more difficult in table-based applications

such as Excel than it is in Word. In Table 12: Analysis of selected tools: results table: Analysis

of selected tools: we look at the capabilities of Word and Excel for requirements

management in more detail.

The second class of tools considered here is also not a classic requirements management

tool, but rather an application originally used for tracking issues. Using this class, the main

thing we want to point out is that before you introduce a requirements management tool in

your company, you should look left and right and check which other tools are already being

used and could potentially even be used for requirements management. Through its

adaptability, the issue tracking system Jira from Atlassian (www.atlassian.com) offers many

more options than just tracking issues. In Jira, you can create different requirements

artifacts with separate attributes, define workflows for status transitions, for example, link

requirements artifacts to one another, and so on. In addition to the standard scope of

functions, Jira offers plug-ins to support agile project methods such as scrum, for example.

Furthermore, Confluence offers a web-based application for organizing documents,

meeting minutes, decisions, or for creating reports and describing the overall project

context. Confluence can be seamlessly integrated into Jira. The use of Jira and Confluence

for requirements management is described in [Syra2014], for example. Figure 50 shows two

screenshots in Jira: on the left, a template for creating requirements with the defined

attributes, and on the right, an example view of requirements. Figure 51 shows an example of

how links can be presented in Jira (Issue Links). In the example, the requirement is connected

to two further requirements via the relationship type "blocks", and to two other requirements

via the relationship type "relates to". These hyperlinks allow bidirectional navigation between

the artifacts.

http://www.atlassian.com/

Requirements Management | Handbook | © IREB 242 | 262

Figure 50: Example template for recording requirements (left) and a status view of requirements

(right)

Figure 51: Example of traceability relationships for a requirement in Jira

Our third class of requirements management tools is dedicated to ProR/RMF, an open

source tool for Requirements Engineering with Eclipse.

The software is available to download free of charge, along with documentation on the tool,

on the Internet at: http://eclipse.org/rmf, www.pror.org

or the download page here: http://eclipse.org/rmf/download.php

ProR normally requires the installation of Eclipse. There was a stand-alone version that did

not need Eclipse. However, this is no longer supported by the RMF project (RMF stands for

Requirements Modeling Framework). A stand-alone ProR variant that is still available to

http://eclipse.org/rmf
http://www.pror.org/
http://eclipse.org/rmf/download.php

Requirements Management | Handbook | © IREB 243 | 262

download free of charge, however, is formalmind Studio from Formal Mind GmbH:

http://www.formalmind.com/studio.

formalmind Studio contains enhancements called ProR Essentials that make work more

efficient. Documentation for this tool can be found here: http://wiki.eclipse.org/RMF

and the RMF Guide here: http://download.eclipse.org/rmf/documentation/rmf-

latex/main.html.

The tool is subject to constant further development. To find out how to implement your own

ideas, see: https://wiki.eclipse.org/RMF/Contributor_Guide/Presentations.

Figure 52 shows a screenshot of a hierarchical requirements list in formalmind Studio. The

attributes themselves can be defined, as well as the types of links that establish traceability

between requirements. As you can see in Table 12: Analysis of selected tools: results table,

formalmind Studio currently supports primarily basic requirements management

functionality. However, there are a number of Eclipse plug-ins that can be used to integrate

the tool and enhance its functions.

Figure 52: Screenshot from formalmind Studio: Requirements hierarchy with two attributes (costs

and priority), as well as links between the features and use cases.

Table 12: Analysis of selected tools: results table gives an overview of the evaluation. We

have used only three values for the evaluation: "Yes" means that the tool supports the

http://www.formalmind.com/studio
http://wiki.eclipse.org/RMF
http://download.eclipse.org/rmf/documentation/rmf-latex/main.html
http://download.eclipse.org/rmf/documentation/rmf-latex/main.html
https://wiki.eclipse.org/RMF/Contributor_Guide/Presentations

Requirements Management | Handbook | © IREB 244 | 262

criterion completely; "Partially" means that the tool supports the criterion with some

limitations; and "No" means that the tool does not support this criterion. The evaluation here

is not intended to be a tool recommendation, but rather a criteria template for evaluating

tools that has been applied for three non-typical requirements management tools by way of

example.

Requirements Management | Handbook | © IREB 245 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Does the tool support the implementation of your requirements information model?

Are the different types of

requirements supported?

Yes No limitation, provided

they can be presented

textually

Yes Via attributes Yes No limitation, provided

they can be presented

textually

Are different requirements

artifacts supported?

Yes No limitation, provided

they can be presented

textually

Yes Via new issue types

and own attributes and

views

Yes

Are different forms of

presentation supported?

Partially Text and templates Partially Text and templates Partially Text only, but elements

of diagrams can be

referenced, e.g., on

integration with Rodin

Are different levels of detail

supported?

Partially Via document

structures or attributes

Partially Via sub-requirements

and linking

Yes Through hierarchical

linking, which can be

changed flexibly using

drag & drop

Can the requirements

documented in the tool be

exported in a structured and

readable form (e.g., as a

requirements specification)?

Yes Already recorded as a

document

Partially Standard export is

purely table-based

Partially As HTML file and as reqIF

file

Does the tool support the creation of the required attributes and views?

Requirements Management | Handbook | © IREB 246 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Are different attributes supported

for each requirement type?

Yes Partially Dependent on the

realization

Yes You can define any

number of requirement

types, each with different

attributes. These can be

mixed within an artifact.

Is the definition of value ranges

for attributes supported?

Yes Value ranges can only

be mapped usefully in

Excel

Yes Yes Value ranges for numbers

as well as value lists

Can multiple attributes be

selected?

No Maximally as a value list Yes In different ways

(checkbox, label, list

selection)

Yes For attributes for which

value lists are defined

Can attribute value transitions be

defined?

No In Excel, could be

defined as a maximum

via a macro

Partially For attributes such as

the status, explicit

statuses and

transitions can be

defined

No

Is the user supported with

automatic values (e.g., date of

creation, creator) when entering

information?

Partially In Word and Excel,

entries could be pre-

labeled

Yes Partially Default values are

supported

Can default values be defined for

attributes?

Partially In Word and Excel,

entries could be pre-

labeled

Yes Yes

Requirements Management | Handbook | © IREB 247 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Is there a differentiation between

optional and mandatory

attributes?

Partially Possible only through

special marking

Yes No

Are dependencies between

attributes supported?

No No No Possible using the Eclipse

Validation Framework

Can ad-hoc views be created? No Yes Partially Yes, but always only one:

attributes can be

displayed or hidden,

filtering by attributes is

possible, sorting is not

possible

Can views created be saved? No Yes Yes But always only one

Can views be restricted using role

concepts?

No Yes No

Does the tool support the prioritization of requirements artifacts?

Are ad-hoc prioritization methods

supported?

No No No

Are analytical prioritization

methods supported?

No No No

Can a history be maintained for

prioritization decisions?

No No No

Requirements Management | Handbook | © IREB 248 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Does the tool support version control for requirements?

Are new versions of artifacts

created automatically?

No The only option is

through tracking

changes

Yes No Possible via an Eclipse

plug-in for version

control

Can different versions be

compared with one another?

Partially To a limited extent, via

the track changes

function in Word; no

option in Excel

Yes No Possible via an Eclipse

plug-in for version

control

Can the change reason be

documented and traced?

Partially A reason can be

recorded in pure text

form at artifact and/or

document level

Yes Changes can be

documented for

example via

comments or separate

issue types

Partially Would be possible in a

separate attribute

Do changes to attributes lead to

new versions of the artifact?

No Manual versioning only Yes No Possible via an Eclipse

plug-in for version

control

Can individual attributes be

removed from the versioning?

No Manual versioning only No No Possible via an Eclipse

plug-in for version

control

Requirements Management | Handbook | © IREB 249 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Is it possible to roll back to old

requirements versions?

Partially To a limited extent, via

the track changes

function in Word; no

option in Excel

No Previous versions can

only be presented, but

not rolled back

No Possible via an Eclipse

plug-in for version

control

Can requirements configurations

be created?

No As a maximum, a

requirements

configuration can be

created as a document

version

No No Possible via an Eclipse

plug-in for version

control

Is it possible to roll back to old

requirements configurations?

No No No Possible via an Eclipse

plug-in for version

control

Is a comparison of requirements

configurations possible?

No No No Possible via an Eclipse

plug-in for version

control and EMF

Compare

Can requirements baselines be

created?

No As a maximum, a

baseline can be

created as a document

version

No No Possible via an Eclipse

plug-in for version

control

Is it possible to roll back to old

requirements baselines?

No No No Possible via an Eclipse

plug-in for version

control

Requirements Management | Handbook | © IREB 250 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Is a comparison of requirements

baselines possible?

No No No Possible via an Eclipse

plug-in for version

control and EMF

Compare

Does the tool support change management?

Can a change management

process be defined?

No Partially If changes are created

as a separate issue

type, a workflow could

be defined for this

No

Are change request templates

offered or supported?

No Partially If changes are created

as a separate issue

type, separate

attributes for a change

request are possible

No

Can change requests be created

and processed based on roles?

No Yes No

Is the processing and evaluation

of change requests supported?

No Partially The processing can be

reflected via a

workflow; the

evaluation itself must

be manual

Partially Change requests can be

documented as

requirements

Requirements Management | Handbook | © IREB 251 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Can the change requests be

subsequently placed in a

relationship to the requirements

to be changed through linking?

No Yes Partially Yes, if the change

requests are managed as

requirements

Does the tool support the traceability strategy of the requirements management plan?

Is traceability between artifacts

supported?

Partially Only via the manual

maintenance of textual

references, hyperlinks,

or matrices

Yes Via linking of issue

types

No

Can different relationship types

be created?

Partially Possible in pure text

form

Yes Yes

Can relationship types to artifacts

be restricted to prevent all

relationship types being used in an

uncontrolled way?

No No No

Is linking to predecessor and

successor artifacts (goals and test

cases) possible (keyword: tool

integration)?

Partially Only via manual textual

references

Yes If all artifacts are

described in Jira

Yes If all artifacts are stored

in formalmind Studio or

through integration with

Rodin

Requirements Management | Handbook | © IREB 252 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Is a role-based maintenance of

traceability relationships

supported or can any user create,

change, or remove all

relationships?

No No All users can do the same

thing

Is traceability between textual and

model-based artifacts supported

(where applicable, on a cross-tool

basis)?

Partially Via textual references,

URLs, and embedded

objects

Partially Via textual references,

URLs, and

attachments

Yes There is an integration

with the modeling tool

Rodin

How can traceability relationships

be presented (matrix, table, graph,

etc.)?

 In every form via

manual effort

 Via hyperlinks Via hyperlinks

Are impact analyses possible for

changes, presenting the

predecessor and successor

artifacts to the user?

No Partially Via hyperlinks Partially Via hyperlinks

Over how many levels is an impact

analysis possible?

 Only the directly linked

artifact is ever visible

 Only the directly linked

artifact is ever visible

 Only the directly linked

artifact is ever visible

Can evaluations of traceability

relationships be created (e.g.,

number of relationships between

test cases and requirements)?

No No No

Requirements Management | Handbook | © IREB 253 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Does the tool support the documentation of variability?

Is the explicit documentation of

variability supported?

No No No

Is the implicit documentation of

variability supported?

Partially Implicit documentation

of variability can be

supported via

templates

Partially Implicit documentation

of variability can be

supported via

attributes

No

Are relationships between

variation points and variants

supported?

No No No

Is feature modeling supported? No No No

Are orthogonal traceability

models supported?

No No No

Is the derivation of specific

products from the defined

variability supported?

No No No

Is it possible to search for variants

and variation points?

No Partially If mapped by separate

attributes

No

Does the tool support reporting as part of requirements management?

Requirements Management | Handbook | © IREB 254 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Are there templates for defining

reports?

No As a maximum,

separate Word

templates

No No

Can own reports be created? Yes Own reports can be

created in Word and

Excel

No No Views only

Is automated creation of reports

(e.g., at certain points in time)

supported?

No No No

Can reports be exported, for

example as a PDF file?

Yes From Office 2010, a

document can be

saved as a PDF

No Yes Only in HTML

Can reports be sent

automatically?

No No No

Can reports be printed? Yes No Yes In HTML format via the

browser

Does the tool support the definition of Requirements Engineering processes?

Can workflows be defined for the

defined Requirements Engineering

activities (e.g., documentation,

check, acceptance)?

No Yes No

Requirements Management | Handbook | © IREB 255 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Is the definition of roles,

responsibilities, and (user) rights

supported?

No Yes No

Can company-wide process

models, which are adapted in

individual projects, be mapped?

Partially Specification

templates can be

created via document

templates

No No

Is parallel and role-based work

supported?

No Yes No

Are open item lists (and tasks)

supported to document unclear

points and tasks and assign them

to specific persons?

No Not with direct

assignment; in

principle, open item

lists can of course be

maintained

Partially Via the creation of

tasks, which are

placed in a relationship

to requirements

No

Can decisions be documented

(e.g., decision logs)?

No Partially Via attachments to a

requirement or linking

to Confluence

No

Requirements Management | Handbook | © IREB 256 | 262

 Excel/Word JIRA/Confluence ProR/formalmind Studio

Criterion Eval. Justification Eval. Justification Eval. Justification

Can Requirements Engineering

processes be checked

(target/actual comparison for

process conformity)?

No No No

Does the tool support agile methods?

Are storyboards and Kanban

boards supported?

No Yes Via the Jira "Agile"

plug-in, both Kanban

and storyboards

No

Are burndown charts supported? No Yes Via the Jira "Agile"

plug-in

No

Are product backlogs and sprint

backlogs supported?

No Yes Via the Jira "Agile"

plug-in

No

Are retrospectives supported? No Yes Via the Jira "Agile"

plug-in

No

Table 12: Analysis of selected tools: results table

At this point, note again that it was not our intention to perform a comprehensive evaluation of tools or these selected tools; we have used

these tools only to demonstrate our requirements management-based selection criteria in the application. Therefore, we apologize if we

have estimated certain functions of one of the tools incorrectly.

Requirements Management | Handbook | © IREB 257 | 262

Annex C (Earned Value Analysis)

The earned value analysis{ XE "Earned value analysis" } (also referred to as the value benefit

analysis{ XE "Value benefit analysis" }) [Kerz2003], [Wann2013a], [Wann2013b] follows the

status of a project based on the progress of the results and the cost consumption. The

progress (degree of completion or earned value) is compared with the planned progress

(planned value) for this point in time and also with the budget consumed to date (actual cost).

With this method, you can detect deviations in the actual project progress compared to the

schedule or the budget at an early stage. If the project is not on plan, then either measures

must be taken to enable the project to be completed on plan, or the earned value analysis

can be used to calculate the delivery delay and the cost overspend in advance.

The earned value analysis requires the following four key figures of the project:

▪ Budget (budget at completion BAC): The budget available for the entire project. In the

earned value analysis, the assumption is that this budget corresponds to the total

costs and the planned value (value of benefit) of the project at the end of the project.

If this is not the case, use the planned total costs for your calculation. Three factors

are added to this total volume of the project, and the values for these three factors

have to be determined at the respective time of reporting.

▪ Planned degree of completion (planned value, PV): Here, you specify in % the

proportion of the project that should be completed at the current point in time. The

figure is calculated as the quotient of the planned work volume and the total volume

of the project.

▪ Degree of completion{ XE "Degree of completion" } (earned value, EV): Here, you

specify in % the proportion of the project that is actually completed at the current

point in time.

▪ Costs to date (actual cost, AC): Here, you specify the costs that have already arisen.

The cost index is the quotient of the costs to date and the total budget of the project.

These key figures tell you what part of the result has already been completed and what

proportion of the budget has been used to do so. You can therefore calculate whether the

project is on schedule and whether work is being performed efficiently—that is, whether the

result created matches the budget consumed. If the cost index matches the degree of

completion, x% of the resources has been used to complete x% of the results and the

project is within budget. If the degree of completion matches the planned degree of

completion, the project is on schedule. Based on the size of any deviations from the plan, you

can create forecasts of how late the project will probably be completed and what the cost

overspend will be.

To check the delivery reliability, calculate as follows:

Compare the earned value with the planned value for the same point in time, that is, compare

the actual degree of completion with the planned degree of completion. If both are the

same, you are on plan. If the actual degree of completion is higher than the planned degree

of completion, that is favorable as you will then probably finish earlier than planned.

Requirements Management | Handbook | © IREB 258 | 262

However, the opposite is the most common case: the actual degree of completion is lower

than the planned degree of completion. The project is therefore behind schedule.

The delay gives rise to a late delivery date for the planned results. If the delivery date

remains fixed in place, then the delay means that the project scope is restricted and part of

the delivery scope may be delivered after the delivery date.

To check that costs are within budget, calculate as follows:

First, calculate the cost index. This is the quotient of the costs to date and the total budget

of the project in %. Then compare the actual degree of completion with the cost index. The

creation of 26% of the project result should consume a maximum of 26% of the total budget.

However, if the degree of completion is smaller than the cost index, then the budget will

probably be exceeded.

There are various approaches for adapting the time and cost plans to reality, that is, for

anticipating the delay and budget overspend:

1. Keep the original plan: The assumption is that the deviation that has already occurred

has no effect and the delay or budget overspend can be recuperated. The end date

and budget therefore remain the same. However, this optimistic hope is rarely fulfilled

even with the most sophisticated of justifications.

2. Add the delay or increase in costs: The delay or cost overspend that has already

arisen is added to the planned values if you assume that the rest of the project will

progress according to plan. This assumption should also be justified. Here, you

calculate as follows:

▪ Date forecast: If the actual degree of completion (e.g., 26%) has been

achieved seven days later than planned, the delay is seven days. The overall

project will be finished with a delay of seven days. Seven days are added to the

end date.

▪ Cost forecast: If, for example, 30% of the budget (= cost index) has been used

to achieve the actual degree of completion (e.g., 26%), at the end, the project

will probably consume 104% of the planned total budget. The probable total

costs are calculated by multiplying the total budget (BAC) by 1.04.

3. Linear forecast: This pessimistic assumption is usually the most realistic. The

assumption is that if the first part of the project is already a certain percentage more

expensive than estimated, there is a systematic error in the estimation and the

remaining work will also be correspondingly more expensive.

▪ Date forecast: If the actual degree of completion (e.g., 26%) has been

achieved seven days later than planned, that is 33 days instead of 26 days, for

example. The rule of three is then applied: if a 26% degree of completion

corresponds to a duration of 33 days, how long will 100% take? The calculation

is as follows: 33 days x 100%/26% = 127 days. A duration of 100 days was

originally planned. The delay is therefore 27 days.

The same result is obtained from an easier calculation: 26% degree of

completion corresponds to a delay of 7 days, 100% degree of completion is

Requirements Management | Handbook | © IREB 259 | 262

therefore 7 days x 100%/26% = 27 days delay. These 27 days are added to the

original delivery date to calculate the probable delivery date. The result is

almost an entire month.

▪ Cost forecast: If, for example, 30% of the budget (= cost index) has been used

to achieve the current degree of completion (e.g., 26%), the rule of three

calculation is as follows: if 26% degree of completion uses 30% of the budget,

100% degree of completion is calculated as 30% of the budget x 100%/26% =

115.4%. This means that at the end, the project costs will probably be 115.4% of

the previously planned total budget. Therefore, in the worst case, the small

overspend to date will add up to a much larger amount at the end of the

project.

The best way to perform an earned value analysis for the Requirements Engineering and

requirements management activities is by using the requirements management tool,

because the requirements management tool primarily contains the information about the

requirements and their status. However, if the requirements management tool manages the

entire development process (in the sense of requirements-based project management), an

earned value analysis can be performed for the entire project with the data from the

requirements management tool. For this purpose, the status attribute of the requirements

must map the entire lifecycle, for example.

To support the earned value analysis with a requirements management tool, the tool must

support the management of the following content:

▪ For each requirement, its entire lifecycle is mapped and managed in a status

attribute—that is, from the elicitation, through the agreement on a specific release,

through implementation, testing, and delivery. A degree of completion is assigned to

each status value, as shown in Table 13, for example.

▪ For each requirement, its planned implementation effort is defined in an attribute

"Effort". These efforts are then used as weighting factors for the determination of the

actual degree of completion of the overall project. On its own, the number of

requirements completed does not correspond to the degree of completion as each

requirement has a different implementation effort.

▪ For an earned value report, the percentage degree of completion is calculated

respectively for each requirement, as shown in Table 13, for example. The degree of

completion is then determined as a weighted average of the degrees of completion

of all requirements, whereby the requirements are averaged according to their

planned budget. Requirements with a high effort therefore have a heavier weighting.

If this is not possible, as an alternative, only the completed requirements can be

calculated as completed (100%), and all others are calculated as incomplete (0%).

The calculation and all other analyses remain the same. The formula for the degree of

completion remains the same, and the same applies for all analyses. However, when

defining the planned value for the degree of completion, you must also consider how

the actual degree of completion will subsequently be determined.

If only the completed requirements are evaluated as "finished", at the beginning of

the project there will initially be no measurable progress. In contrast, at the end of the

Requirements Management | Handbook | © IREB 260 | 262

project, a lot of requirements will be finished within a short time. However, this type of

plan progression does not allow deviations from the plan to be detected so early. We

therefore recommend a proportionate consideration of requirements in progress.

▪ To determine the actual budget consumed at any point in time, the costs incurred to

date must be managed in an attribute for each requirement. However, this type of

requirements-based cost recording in a requirements management tool could,

depending on the company, lead to a duplicate recording and could appear pedantic

to the developers. Therefore, the budget consumed can also be determined from

another tool (time recording, project management tool, Controlling) at any point in

time.

Additional information that is not requirements-based but is used for the earned value report

is the planned degree of the completion of the project at a point in time and the total budget

for the project (budget at completion), which must also be managed in a tool if the earned

value report is calculated.

The following table (Table 13) shows the degrees of completion of requirements, dependent

on the status, according to various authors. [RuSo2009] evidently refers only to the

elicitation, documentation, and agreement process for the requirement. Therefore, the

degree of completion of 100% corresponds to the status "Approved", while in [Eber2012],

this status corresponds to 0% because here, the project progression is considered after the

requirement approval. The percentages in the left column are therefore suitable for an

earned value analysis of Requirements Engineering, while the status in the middle column is

suitable for the earned value analysis of the implementation. We want to cover the entire

project cycle, and therefore we propose a further scale on the far right.

To support the earned value analysis, for each requirement, the attributes must be included

and maintained in the attribute schema, as presented in Table 13. "Planned costs", that is, the

costs estimated for each requirement, are entered once. For each point in time to be

considered, the time-specific values "Planned value", "Actual costs", and "Status" must be

maintained. The degree of completion of the requirement is calculated automatically from

the respective status that a degree of completion is assigned to (see Table 14). The value

achieved for a requirement is calculated from the degree of completion multiplied by the

effort. The values for the overall project are therefore calculated as follows:

▪ Budget at completion = total of planned costs for all requirements

▪ Actual costs = total of the actual costs for all requirements

▪ Status: determined manually as the result of the earned value analysis and its

forecasts, but also the evaluation of the project manager with regard to whether

delays that have occurred can be compensated for

▪ Completion: the degree of completion of the project is the weighted average value of

the degrees of completion of the requirements, weighted by effort. In this example:

(€4000 x 50% + €2000 x 10% + €2000 x 100% + …)/€30000. The result is a

percentage.

▪ Value achieved = total of the values achieved for all requirements

Requirements Management | Handbook | © IREB 261 | 262

Requirement

Status

[Rupp & Sophist

2004]

[Eber2012] [RuSo2009] Our Proposal

 Degree of

completion in

relation to the

elicitation,

documentation,

and approval

process

Degree of

completion in

relation to

implementation

Degree of

completion in

relation to the

overall project

Degree of

completion in

relation to the

overall project

Created 0 % 20 % 10 %

Signed off 30 % 30 %

Acceptance

criteria complete

60 %

Consistent with

object model

75 %

Consistent with

prototype

90 %

Verified/checked 95 % 40 % 20 %

Approved/agree

d/released

100 % 0 % 50 % 25 %

Drafted 60 %

In

implementation

 10 % 50 %

Implemented 50 % 80 % 70 %

Tested/complet

ed

 100 % 100 % 100 %

Table 13: The degrees of completion of requirements, dependent on the status

Requirements Management | Handbook | © IREB 262 | 262

Date: Today Effort/Planned

Costs

Actual Costs Status Completion Value

Reached

Requirement 1 4,000 € 1,800 € In

implementation

50 % 2,000 €

Requirement 2 2,000 € 150 € Created 10 % 200 €

Requirement 3 2,000 € 2,100 € Completed 100 % 2,000 €

…

Overall project 30,000 € 9,500 € Yellow 30 % 9,000 €

Table 14: Assignment of attributes for the requirements, to support the earned value analysis

	1 What is requirements management?
	1.1 Definition of requirements management
	1.2 Tasks in requirements management
	1.3 Goals and benefits of Requirements Management
	1.4 The requirements management plan
	1.5 Relevant standards
	1.6 Literature for further reading

	2 Requirements information model
	2.1 Basic principles (classification of requirements)
	2.1.1 Classification by type of requirement
	2.1.2 Classification according to the dependence of requirements on a solution
	2.1.3 Levels of detail for Requirements—Twin Peaks Model

	2.2 Forms of presentation for documenting requirements
	2.3 Describing a requirements landscape with a requirements information model
	2.4 Content for the requirements management plan
	2.5 Literature for further reading

	3 Assigning attributes and views for requirements
	3.1 Objectives of assigning attributes and examples of the use of attributes in management activities
	3.2 What is an attribute schema?
	3.3 The benefits of an attribute schema
	3.4 Designing an attribute schema
	3.4.1 Identifying Sources of Attributes
	3.4.2 Selecting attributes
	3.4.3 Defining permitted attribute values and properties of attributes
	3.4.4 Defining dependencies between attributes and their values
	3.4.5 Providing support for recording data
	3.4.6 Documenting the attribute schema

	3.5 Change management for attribute schemas
	3.5.1 Adding, changing, or deleting an attribute
	3.5.2 Adding, changing, or deleting possible attribute values (value range)
	3.5.3 Adding or deleting relationships between attributes
	3.5.4 Changing default values for the attribute type
	3.5.5 Changing the binding character of attributes ("mandatory fields" and "optional fields")

	3.6 Goals and types of views
	3.7 Defining views and the risks of views
	3.8 Implementing a view
	3.9 Optimizing the assignment of attributes and creation of views
	3.10 Content for the requirements management plan
	3.11 literature for further reading

	4 Evaluating and prioritizing requirements
	4.1 Motivation and difficulties when prioritizing requirements
	4.2 Principles of evaluation
	4.3 Prioritizing requirements
	4.4 Two types of prioritization techniques
	4.5 Ad-hoc prioritization techniques
	4.5.1 Requirements triage
	4.5.2 Ranking
	4.5.3 Top-Ten Technique
	4.5.4 Single-criteria classification
	4.5.5 Planning Poker
	4.5.6 Two-criteria classification
	4.5.7 The 100-Dollar Technique
	4.5.8 Kano classification

	4.6 Analytical prioritization techniques
	4.6.1 Prioritization matrix according to Wiegers
	4.6.2 The analytical hierarchy process (AHP)

	4.7 Combining prioritization techniques
	4.8 Content for the requirements management plan
	4.9 Literature for further reading

	5 Version and change management
	5.1 Versioning requirements
	5.1.1 Version Control for requirements and requirements documents
	5.1.2 Requirements configurations
	5.1.3 The requirements baseline
	5.1.4 Branching requirements

	5.2 Change management for requirements
	5.2.1 Causes, sources, and timing of requirement changes
	5.2.2 Types of changes to requirements
	5.2.3 Analyzing and documenting the stability of requirements

	5.3 Change management process
	5.3.1 The change request

	5.4 Content for the requirements management plan
	5.5 Literature for further reading

	6 Requirements traceability
	6.1 Reasons for requirements traceability
	6.1.1 What does requirements traceability mean?
	6.1.2 Why traceability between requirements and other sevelopment artifacts is important

	6.2 Different traceability views
	6.3 Relationship types for traceability relationships
	6.3.1 Classes of relationship types for traceability
	6.3.2 Dimensions and relationship types

	6.4 Forms of presentation for traceability relationships
	6.4.1 Implicit and explicit documentation of traceability
	6.4.2 Bidirectional and unidirectional traceability relationships
	6.4.3 Forms of presentation for traceability relationships
	6.4.3.1 Textual references
	6.4.3.2 Hyperlinks
	6.4.3.3 Traceability matrices
	6.4.3.4 Traceability tables
	6.4.3.5 Traceability graphs
	6.4.3.6 Comparison of the different forms of presentation for traceability

	6.5 Developing a strategy for project-specific traceability
	6.5.1 The traceability goal
	6.5.2 The usage strategy
	6.5.3 The recording strategy
	6.5.4 The project-specific traceability model

	6.6 Creating and using project-specific traceability models
	6.6.1 Creating a project-specific traceability model
	6.6.2 Using a project-specific traceability model

	6.7 Measures for evaluating implemented traceability
	6.8 Challenges for traceability between textual and model-based artifacts
	6.9 Content for the requirements management plan
	6.10 Literature for further reading

	7 Variant management for requirements
	7.1 Using variants of requirements
	7.2 Forms of explicit documentation of variants and evaluation of these forms
	7.2.1 Textual assignment of requirements to specific products
	7.2.2 Explicit assignment of requirements to specific products
	7.2.3 Explicit assignment of requirements to specific product features
	7.2.4 Indirect assignment of requirements to products through features
	7.2.5 Comparison of the forms of presentation

	7.3 Feature modeling
	7.3.1 Creating feature models
	7.3.2 Deriving product configurations from feature models
	7.3.3 Identifying features
	7.3.4 Tool support

	7.4 Content for the requirements management plan
	7.5 Literature for further reading

	8 Reporting in requirements management
	8.1 The goals and benefits of reporting in requirements management
	8.2 Establishing a reporting system in requirements management
	8.2.1 Interfaces
	8.2.2 Contents of a report
	8.2.2.1 Key figures in requirements management
	8.2.2.2 Standard contents of reports

	8.2.3 Tips for Developing and Applying Reporting
	8.2.4 The report definition process
	8.2.5 Goal, question, metric method
	8.2.6 Data collection
	8.2.7 Checking the data quality

	8.3 The risks and problems of using reporting
	8.4 Content for the requirements management plan
	8.5 Literature for further reading

	9 Managing Requirements Engineering processes
	9.1 Requirements Engineering as a process
	9.2 Parameters of the Requirements Engineering process
	9.2.1 Timing of the elicitation (upfront or iterative)
	9.2.2 Level of detail of requirements documentation
	9.2.3 Change management: incorporation of changes (change cequest versus product backlog)
	9.2.4 Allocation of responsibility

	9.3 Documenting the Requirements Engineering process
	9.4 Monitoring and controlling the Requirements Engineering process
	9.5 Process improvement for the Requirements Engineering process
	9.6 Content for the requirements management plan
	9.7 Literature for further reading

	10 Requirements management in agile projects
	10.1 Background
	10.1.1 Basic principles of agile development
	10.1.2 Scrum as the representative of the agile methods
	10.1.2.1 Scrum process
	10.1.2.2 Scrum artifacts
	10.1.2.3 Scrum roles

	10.2 Requirements management as part of agile product development
	10.3 Mapping requirements management activities to scrum activities
	10.4 Literature for further reading

	11 Tool-based requirements management
	11.1 Role of tools in requirements management
	11.2 Basic procedure for tool selection
	11.3 Data exchange between requirements management tools
	11.4 Content for the requirements management plan
	11.5 Literature for further reading

	12 List of Abbreviations
	13 Bibliography
	Index
	1
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	N
	P
	Q
	R
	S
	T
	U
	V

	Annex A: Template for a requirements management plan
	1 The Requirements Engineering and requirements management process
	1.1 Requirements Engineering and requirements management tools
	1.2 Requirements information model
	1.3 Attribute schema
	1.4 Prioritization
	1.5 Traceability
	1.6 Views and reports
	1.7 Versioning
	1.8 Change process
	1.9 Variant management

	Annex B (tool selection)
	1 The challenges of introducing and using tools
	2 Criteria for selecting a requirements management tool
	3 Analyzing selected tools using the requirements management plan evaluation criteria
	Annex C (Earned Value Analysis)

