
Nine Fundamental Principles
 of

Requirements Engineering

Value Orientation:
Requirements are means to an end,

not an end in itself

The act of writing requirements is not a goal in itself. To be useful,
requirements need to add value. The value of a requirement is defined
as its benefit minus its cost. The better the requirements help to fulfill
the stakeholders' needs and desires and reduce rework costs, the higher
the benefit.

To optimize the value of a requirement, Requirements Engineers elicit
and document the needs of the stakeholders as precisely as possible.
Depending on how extensive and precise the requirements are
specified, the costs involved in eliciting and documenting them
increase.

The economic value of RE is mostly indirect because early
implementation reduces rework costs in the long term, but the costs for
eliciting and documenting requirements are immediate.

The core goal of RE is to understand the stakeholders’ desires and needs

and to minimize the risk of delivering a system that doesn’t meet these.

The stakeholders and their roles must be considered to fulfill this goal.

Every stakeholder has a role in the context of the system (e.g., user,

client, customer, operator, or regulator) and thus different viewpoints on
requirements. So, stakeholders have to be classified with respect to the
degree of their influence (critical, major, minor) on the system's success.
This helps with assessing the criticality of requirements and in
negotiation conflicts.

It is vital for the success of RE to identify inconsistencies and conflicts
between the requirements of different stakeholders and to resolve them,
be it by finding a consensus, overruling, or specifying system variants for
stakeholders with different needs.

Stakeholders:
RE is about satisfying the stakeholders'

desires and needs

Shared understanding:
Successful systems development is

impossible without common basis

For successful RE implementation, a shared understanding of the
problem between stakeholders, Requirements Engineers, and
developers is needed.

We distinguish between explicit shared understanding (often used for

plan-driven processes), which is achieved through carefully elicited,
documented, and agreed requirements, and implicit shared

understanding (often used in agile processes), which is based on shared

knowledge about needs, visions, context, etc. Whether explicit or
implicit, we can’t rely blindly on shared understanding, as stakeholders
may interpret issues differently. It is the task of RE to create true shared

understanding.

Practices to achieve this include working with glossaries and
prototypes, using existing systems as references, providing examples of
expected outcomes, estimating costs of implementing a requirement,
and short feedback loops.

Context:
Systems cannot be understood in isolation

Systems are always embedded in a larger context. Without understanding
this system context, it's almost impossible to specify a system correctly.
The system context in RE is defined as the part of a system’s environment
being relevant for understanding the system and its requirements. A user
login for a banking system might come up with different requirements than
one for the members area in a sports club.

Understanding the context of the system is important to identify the
relevant interfaces to existing systems, regulations, and stakeholders of the
intended system. Understanding the context of a system helps to fix the
context boundary (defining what part of the system context has to be
considered or not). It also fixes the system boundary (defining what is
within the scope of the intended system and what is not).

It is important to understand that RE goes beyond considering
requirements in the system boundary. RE also has to deal with aspects that
are coming from the system context.

Problem, requirement,
solution:
An inevitably intertwined triple

Problems, their solutions, and requirements are closely intertwined. Any
situation in which people are unsatisfied with processes and results can be
considered a problem. To eliminate the problem, a socio-technical system
may come into action. This system needs requirements to make the system a
solution to the problem.

It's important to understand that problems, requirements and solutions don't
always arise in this chronological order. The design of an innovative system
can be driven by a solution that ends up solving a known problem.
Understanding the problem and the solution in turn leads to the elaboration
of requirements that satisfy user needs and are implemented in a concrete
solution.

Despite the intertwinement of problems, requirements, and solutions,
Requirements Engineers strive to separate requirements concerns from
solution concerns when thinking, communicating, and documenting in order
to provide as little technical direction as possible.

The ultimate goal of developing and deploying a system is to satisfy all
stakeholders’ desires and needs. However, waiting until the end is risky and
bears the risk of unsatisfied stakeholders. Thus, the validation of
requirements must start during RE.

Validation is a core activity of RE and describes the process of confirming
that the documented requirements match the stakeholders’ needs and
whether the right requirements have been specified.

During the validation, it is crucial to check whether all conflicts among
stakeholders are resolved and priorities are set, that the stakeholders’
desires and needs are covered by the requirements and the domain
assumptions are reasonable.

Validation:
Non-validated requirements are useless

Evolution:
Changing requirements are no accident,

but the normal case

Needs, businesses and capabilities are always exposed to evolution.
As a consequence, the requirements for systems that satisfy needs,
support businesses and use technical capabilities will also change. If
the requirements don't keep up with the evolution of the system,
they will eventually lose value and become useless.

Reasons for the changes are vast and can range from changed
business processes to the detection of errors or faulty domain
assumptions.

On the one hand, Requirements Engineers have to permit
requirements to change, since ignoring their need to change would be
futile. On the other hand, they have to keep requirements stable,
because the cost for change can become high and development
teams can't develop systematically with constantly changing
requirements.

Innovation:
More of the same is not enough

As mentioned before, the main concern of RE is to satisfy
stakeholder’s desires and needs. However, it is crucial to not fall into
the role of the stakeholder’s voice recorder, specifying exactly what
the stakeholders tell you since that would mean missing out on the
opportunity of doing things better than before.

Requirements Engineers must walk the fine line between staying
innovative without believing they know everything better than the
stakeholders.

On a small scale, RE shapes innovative systems by striving for exciting
new features and ease of use. Beyond that, Requirements Engineers
also need to look for the big picture, exploring with the stakeholders
whether there are any disruptive ways of doing things, leading to
large-scale innovation.

Systematic and
disciplined work:
We can't do without RE

RE is not an art but a discipline, which calls for RE to be performed in

a systematic and disciplined way. Even when a system is developed in

an ad hoc fashion, a systematic and disciplined approach to RE will

improve the quality of the resulting system. Agility and flexibility are
not valid excuses for an unsystematic, ad hoc style of work in RE.

However, there is no “one size fits all” for RE. Requirements Engineers

need to conceptualize RE processes that are suited for the problem at

hand. They shouldn’t always use the same process, practices and work

products, but select those that help best with the given problem,

context and working environment. Last but not least, processes and

practices from past successful RE work shouldn’t be reused without

reflecting upon them first.

