

1.1.1 | Foundation Level | Handbook

Foundation Level

Handbook

Martin Glinz

Hans van Loenhoud

Stefan Staal

Stan Bühne

Foundation Level | Handbook | © IREB 2 | 158

Terms of Use

All contents of this document, especially texts, photographs, graphics, diagrams, tables,

definitions and templates, are protected by copyright. Copyright © 2022 for this handbook is

with the authors. All (co-)authors of this document have transferred the exclusive right of

use to IREB e.V.

Any use of the handbook or its components, in particular copying, distribution (publication),

translation, or reproduction, requires the prior consent of IREB e.V.

Any individual is entitled to use the contents of the handbook within the scope of the acts of

use permitted by copyright law, in particular to quote these correctly in accordance with

recognized academic rules.

Educational institutions are entitled to use the contents of the handbook for teaching

purposes under correct reference to the work.

Use for advertising purposes is only permitted with the prior consent of IREB e.V.

Acknowledgements

The content of this handbook was reviewed by Rainer Grau, Karol Frühauf, and Camille

Salinesi. Tracey Duffy performed an English review. Stan Bühne and Stefan Sturm did the

final editing.

Version 1.0.0 was approved for release on November 11, 2020 by the IREB Council upon

recommendation of Xavier Franch and Frank Houdek.

Version 1.1.0 was approved for release on August 15, 2022 by the IREB ExCo.

We thank everybody for their involvement.

Foundation Level | Handbook | © IREB 3 | 158

Foreword

This handbook provides an introduction to Requirements Engineering based on the syllabus

version 3.0 for the Certified Professional for Requirements Engineering (CPRE)—Foundation

Level according to the IREB standard. It complements the syllabus and addresses three

groups of readers:

▪ Students and practitioners who want to learn about Requirements Engineering and

take the certification exam can use this handbook as a companion book to training

courses offered by training providers, as well as for self-study and individual

preparation for the certification exam. This handbook may also be used to refresh

existing knowledge about Requirements Engineering, for example, when preparing for

a CPRE Advanced Level course and exam.

▪ Training providers who offer trainings on the CPRE Foundation Level can use this

handbook as a complement to the syllabus for developing their training materials or

as a study text for the participants in their trainings.

▪ Professionals in industry who want to apply proven RE concepts and knowledge in

their practical work will find a wealth of useful information in this handbook.

This handbook also provides a link between the syllabus, which lists and explains the learning

objectives, and the literature on Requirements Engineering. Every chapter comes with

references to the literature and hints for further reading. The structure of the handbook

matches the structure of the syllabus.

The terminology used in this handbook is based on the CPRE Glossary of Requirements

Engineering Terminology [Glin2020]. We recommend downloading this glossary from the

IREB website and use it as a terminology reference.

You find more information about the CPRE certification program, including the syllabi,

glossary, examination regulations and sample exam questions on the IREB website at

https://www.ireb.org.

Both the authors and IREB have invested a significant amount of time and effort into

preparing, reviewing and publishing this handbook. We hope that you will enjoy studying this

handbook. If you detect any errors or have suggestions for improvement, please contact us

at info@ireb.org.

We would like to thank all people who contributed to the creation and publication of this

handbook. Karol Frühauf, Rainer Grau and Camille Salinesi carefully reviewed the manuscript

and provided valuable suggestions for improvement. Tracey Duffy did an English review. We

also thank the IREB Council Shepherds of this handbook, Xavier Franch and Frank Houdek,

for their feedback and support. Stefan Sturm provided encouragement and logistic support.

We also thank our spouses and families for their patience and support.

Martin Glinz, Hans van Loenhoud, Stefan Staal, and Stan Bühne

November 2020

https://www.ireb.org/
mailto:info@ireb.org

Foundation Level | Handbook | © IREB 4 | 158

Understanding the Text Boxes in this Handbook

The handbook includes four differently colored text boxes that complement the explanatory

text.

These are:

Definition (corresponding to the Glossary [Glin2020])

Hint

Example

Expression

Foundation Level | Handbook | © IREB 5 | 158

Version History

Version Date Comment Authors

1.0.0 November 11, 2020 First release Martin Glinz

Hans van Loenhoud

Stefan Staal

Stan Bühne

1.0.1 December 2020 Minor update

1.1.0 September 1, 2022 Editorial updates and alignment to

the updated CPRE Foundation Level

Syllabus v 3.1.0.

Martin Glinz

Hans van Loenhoud

Stefan Staal

Stan Bühne

Wim Decoutre

1.1.1 January 1, 2024 New Corporate Design implemented Stefan Sturm

Foundation Level | Handbook | © IREB 6 | 158

Content

Version History ... 5

Content ... 6

1 Introduction and Overview 10

1.1 Requirements Engineering: What 10

1.2 Requirements Engineering: Why 12

1.3 Requirements Engineering: Where 13

1.4 Requirements Engineering: How 13

1.5 The Role and Tasks of a Requirements Engineer 14

1.6 What to Learn about Requirements Engineering 14

1.7 Further Reading ... 15

2 Fundamental Principles of Requirements Engineering 16

2.1 Overview of Principles .. 16

2.2 The Principles Explained .. 16

2.2.1 Principle 1 – Value orientation: Requirements are a means to an end, not an end

in itself ... 16

2.2.2 Principle 2 – Stakeholders: RE is about satisfying the stakeholders’ desires

and needs ... 18

2.2.3 Principle 3 – Shared understanding: Successful systems development is

impossible without a common basis ... 20

2.2.4 Principle 4 – Context: Systems cannot be understood in isolation 22

2.2.5 Principle 5 – Problem, requirement, solution: An inevitably intertwined triple

 .. 24

2.2.6 Principle 6 – Validation: Non-validated requirements are useless 25

2.2.7 Principle 7 – Evolution: Changing requirements are no accident, but the normal

case .. 26

2.2.8 Principle 8 – Innovation: More of the same is not enough 27

2.2.9 Principle 9 – Systematic and disciplined work: We can’t do without in RE 28

Foundation Level | Handbook | © IREB 7 | 158

2.3 Further Reading ... 29

3 Work Products and Documentation Practices 30

3.1 Work Products in Requirements Engineering 30

3.1.1 Characteristics of Work Products .. 30

3.1.2 Abstraction Levels .. 33

3.1.3 Level of Detail ... 34

3.1.4 Aspects to be Considered .. 35

3.1.5 General Documentation Guidelines .. 37

3.1.6 Work Product Planning ... 38

3.2 Natural-Language-Based Work Products 38

3.3 Template-Based Work Products 40

3.3.1 Phrase Templates .. 41

3.3.2 Form Templates .. 43

3.3.3 Document Templates .. 45

3.3.4 Advantages and Disadvantages .. 46

3.4 Model-Based Work Products ... 47

3.4.1 The Role of Models in Requirements Engineering 48

3.4.2 Modeling System Context ... 54

3.4.3 Modeling Structure and Data ... 58

3.4.4 Modeling Function and Flow .. 61

3.4.5 Modeling State and Behavior ... 64

3.4.6 Supplementary models .. 66

3.5 Glossaries .. 70

3.6 Requirements Documents and Documentation Structures 70

3.7 Prototypes in Requirements Engineering 72

3.8 Quality Criteria for Work Products and Requirements 73

3.9 Further Reading ... 74

4 Practices for Requirements Elaboration 76

4.1 Sources for Requirements .. 78

4.1.1 Stakeholders .. 79

4.1.2 Documents ... 84

Foundation Level | Handbook | © IREB 8 | 158

4.1.3 Other Systems ... 85

4.2 Elicitation of Requirements 86

4.2.1 The Kano Model .. 88

4.2.2 Gathering Techniques .. 91

4.2.3 Design and Idea-Generating Techniques 94

4.3 Resolving Conflicts regarding Requirements 98

4.3.1 How Do You Resolve a Requirements Conflict? 99

4.3.2 Conflict Types ... 101

4.3.3 Conflict Resolution Techniques ... 103

4.4 Validation of Requirements 107

4.4.1 Important Aspects for Validation ... 108

4.4.2 Validation Techniques .. 109

4.5 Further Reading .. 114

5 Process and Working Structure 115

5.1 Influencing Factors .. 115

5.2 Requirements Engineering Process Facets 117

5.2.1 Time Facet: Linear versus Iterative .. 118

5.2.2 Purpose Facet: Prescriptive versus Explorative 119

5.2.3 Target Facet: Customer-Specific versus Market-Oriented 120

5.2.4 Hints and Caveats .. 120

5.2.5 Further Considerations ... 121

5.3 Configuring a Requirements Engineering Process 121

5.3.1 Typical Combinations of Facets ... 122

5.3.2 Other RE Processes ... 125

5.3.3 How to Configure RE Processes .. 125

5.4 Further Reading .. 126

6 Management Practices for Requirements 127

6.1 What is Requirements Management? 128

6.2 Life Cycle Management .. 129

6.3 Version Control .. 131

Foundation Level | Handbook | © IREB 9 | 158

6.4 Configurations and Baselines 132

6.5 Attributes and Views ... 134

6.6 Traceability ... 137

6.7 Handling Change .. 139

6.8 Prioritization ... 141

6.9 Further Reading .. 143

7 Tool Support ... 144

7.1 Tools in Requirements Engineering 144

7.2 Introducing Tools .. 146

7.2.1 Consider All Life Cycle Costs beyond License Costs 146

7.2.2 Consider Necessary Resources ... 146

7.2.3 Avoid Risks by Running Pilot Projects 147

7.2.4 Evaluate the Tool according to Defined Criteria 147

7.2.5 Instruct Employees on the Use of the Tool 148

7.3 Further Reading .. 148

8 References ... 150

Foundation Level | Handbook | © IREB 10 | 158

1 Introduction and Overview

In this chapter, you will learn what Requirements Engineering (RE) is all about and the value

that RE brings.

1.1 Requirements Engineering: What

Since the beginning of human evolution, humans have been building technical and

organizational systems to support them in completing tasks or achieving objectives. With the

rise of engineering, humans have also started to build systems that automate human tasks.

Whenever humans decide to build a system to support or automate human tasks, they have

to figure out what to build. This means that they have to learn about the desires and needs of

the persons or organizations who will use the system, benefit from it, or be impacted by it. In

other words, they need to know about the requirements for that system. Requirements form

the basis for any development or evolution of systems or parts thereof. Requirements

always exist, even when they are not explicitly captured and documented.

The term requirement denotes three concepts [Glin2020]:

Definition 1.1. Requirement:

1. A need perceived by a stakeholder.

2. A capability or property that a system shall have.

3. A documented representation of a need, capability, or property.

A systematically represented collection of requirements—typically for a system—that

satisfies given criteria is called a requirements specification.

We distinguish between three kinds of requirements:

▪ Functional requirements concern a result or behavior that shall be provided by a

function of a system. This includes requirements for data or the interaction of a

system with its environment.

▪ Quality requirements pertain to quality concerns that are not covered by functional

requirements — for example, performance, availability, security, or reliability.

▪ Constraints are requirements that limit the solution space beyond what is necessary

to meet the given functional requirements and quality requirements.

Note that dealing with requirements for projects or development processes is outside the

scope of this handbook.

Distinguishing between functional requirements, quality requirements, and constraints is not

always straightforward. One proven way to differentiate between them is to ask for the

concern that a requirement addresses: if the concern is about required results, behavior, or

interactions, we have a functional requirement. If it is a quality concern that is not covered by

Foundation Level | Handbook | © IREB 11 | 158

the functional requirements, we have a quality requirement. If the concern is about

restricting the solution space but is neither a functional nor a quality requirement, we have a

constraint. The popular rule “What the system shall do → functional requirement vs. how the

system shall do it → quality requirement” frequently leads to misclassifications, particularly

when requirements are specified in great detail or when quality requirements are very

important.

For example, the requirement “The customer entry form shall contain fields for the

customer’s name and first name, taking up to 32 characters per field, displaying at least 24

characters, left-bound, with a 12 pt. sanserif font” is a functional requirement even though it

contains a lot of information about how. As another example, consider a system that

processes the measurement data produced by the detector of a high-energy particle

accelerator. Such detectors produce enormous quantities of data in real time. If you ask a

physicist “What shall the system do?”, one of the first answers would probably be that the

system must be able to cope with the volume of data produced. However, requirements

concerning data volume or processing speed are quality requirements [Glin2007] and not

functional requirements.

When people take a systematic and disciplined approach to the specification and

management of requirements, we call this Requirements Engineering (RE). The following

definition of Requirements Engineering also reflects why we perform RE.

Definition 1.2. Requirements Engineering (RE):

The systematic and disciplined approach to the specification and

management of requirements with the goal of understanding the

stakeholders’ desires and needs and minimizing the risk of

delivering a system that does not meet these desires and needs.

The concept of stakeholders [GlWi2007] is a fundamental principle of Requirements

Engineering (see Chapter 2).

Definition 1.3. Stakeholder:

A person or organization who influences a system’s requirements or

who is impacted by that system.

Note that influence can also be indirect. For example, some stakeholders may have to follow

instructions issued by their managers or organizations.

Following the definition in the CPRE RE glossary [Glin2020], we use the term system in a

broad sense in this handbook:

Foundation Level | Handbook | © IREB 12 | 158

Definition 1.4. System:

1. In general: a principle for ordering and structuring.

2. In engineering: a coherent, delimitable set of elements that—by

coordinated action—achieve some purpose.

Note that a system may comprise other systems or components as subsystems. The

purposes achieved by a system may be delivered by:

▪ Deploying the system at the place(s) where it is used

▪ Selling/providing the system to its users as a product

▪ Having providers who offer the system’s capabilities to users as services

We therefore use the term system as an umbrella term which includes products, services,

apps, or devices.

1.2 Requirements Engineering: Why

Developing systems (building new ones as well as evolving existing ones) is an expensive

endeavor and constitutes a high risk for all participants. At the same time, systems that have

practical relevance are too large for a single person to grasp intellectually. Therefore,

engineers have developed various principles and practices for handling the risk when

developing a system and for mastering the intellectual complexity. Requirements

Engineering provides the principles and practices for the requirements perspective.

Adequate Requirements Engineering (RE) adds value [Glin2016], [Glin2008] to the process of

developing a system:

▪ RE minimizes the risk of failure or costly modifications in later development stages.

The early detection and correction of wrong or missing requirements is much cheaper

than the correction of errors and rework caused by missing or wrong requirements in

later development stages or even after deployment of a system.

▪ RE eases the intellectual complexity involved in understanding the problem that a

system is supposed to solve and reflecting on potential solutions.

▪ RE provides a proper basis for estimating development effort and cost.

▪ RE is a prerequisite for testing the system properly.

Typical symptoms of inadequate RE are missing, unclear, or wrong requirements due to:

▪ Development teams rushing right into implementing a system due to schedule

pressure

▪ Communication problems between parties involved—in particular, between

stakeholders and system developers and among the stakeholders themselves

▪ The assumption that the requirements are self-evident, which is wrong in most cases

▪ People conducting RE activities without having adequate education and skills

Foundation Level | Handbook | © IREB 13 | 158

1.3 Requirements Engineering: Where

Requirements Engineering can be applied to requirements for any kind of system. However,

the dominant application case for RE today involves systems in which software plays a major

role. Such systems consist of software components, physical elements (technical products,

computing hardware, devices, sensors, etc.), and organizational elements (persons,

positions, business processes, legal and compliance issues, etc.).

Systems that contain both software and physical components are called cyber-physical

systems.

Systems that span software, hardware, people, and organizational aspects are called socio-

technical systems.

Depending on the perspective taken, requirements occur in various forms:

System requirements describe how a system shall work and behave—as observed at the

interface between the system and its environment—so that the system satisfies its

stakeholders’ desires and needs. In the case of pure software systems, we speak of software

requirements.

Stakeholder requirements express stakeholders’ desires and needs that shall be satisfied by

building a system, seen from the stakeholders’ perspective.

User requirements are a subset of the stakeholder requirements. They cover the desires and

needs of the users of a system.

Domain requirements specify required domain properties of a socio-technical or cyber-

physical system.

Business requirements focus on the business goals, objectives, and needs of an organization

that shall be achieved by employing a system (or a collection of systems).

The forms of occurrence as presented above match those defined in the standard

[ISO29148], with the exception of domain requirements. Due to their importance, we treat

domain requirements as a form of their own. The role and importance of domain

requirements are discussed in Section 2.2, Principle 4.

1.4 Requirements Engineering: How

The major tasks in RE are the elicitation (Chapter 4), documentation (Chapter 3), validation

(Section 4.4), and management (Chapter 6) of requirements. Tool support (Chapter 7) can

help perform these tasks. Requirements analysis and requirements conflict resolution are

considered to be part of elicitation.

However, there is no universal process that describes when and how RE should be

performed when developing a system. For every system development that needs RE

activities, a suitable RE process must be tailored from a broad range of possibilities. Factors

that influence this tailoring include, for example:

Foundation Level | Handbook | © IREB 14 | 158

▪ The overall system development process—in particular, linear and plan-driven vs.

iterative and agile

▪ The development context—in particular, the relationship between the supplier, the

customer(s), and the users of a system

▪ The availability and capability of the stakeholders

There is also a mutual dependency between the requirements work products to be produced

(see Section 3.1) and the RE process to be chosen. More details are given in Chapter 5.

1.5 The Role and Tasks of a Requirements Engineer

In practice, very few people have the job title Requirements Engineer. We consider people to

act in the role of a Requirements Engineer when they:

▪ Elicit, document, validate, and/or manage requirements as part of their duties

▪ Have in-depth knowledge of RE, which enables them to define RE processes, select

appropriate RE practices, and apply these practices properly

▪ Are able to bridge the gap between the problem and potential solutions

The role of Requirements Engineer is part of several job functions defined by organizations.

For example, business analysts, application specialists, product owners, systems engineers,

and even developers may act in the role of a Requirements Engineer. Having RE knowledge

and skills is also useful for many other professionals—for example, designers, testers, system

architects, or CTOs.

1.6 What to Learn about Requirements Engineering

The set of skills that a Requirements Engineer must learn consists of various elements. The

foundational elements are covered in the subsequent chapters of this handbook.

Beyond technical and analytical skills, a Requirements Engineer also needs what are referred

to as soft skills: the ability to listen, moderate, negotiate, and mediate, as well as empathy for

stakeholders and openness to the needs and ideas of others.

RE is governed by a set of fundamental principles that apply to all tasks, activities, and

practices of RE. These principles are presented in Chapter 2.

Requirements can be documented in various forms. Various work products can be created

at different levels of maturity and detail, from rather informal and temporary ones to very

detailed and structured work products that adhere to strict representation rules. It is

important to select work products and forms of documentation that are adequate for the

situation at hand and to create the chosen work products properly. Work products and

documentation practices are presented in Chapter 3.

Requirements can be elaborated (i.e., elicited and validated) with various practices. A

Requirements Engineer must be able to select the practices that are best suited in a given

situation and apply these practices properly. Elaboration practices are presented in

Chapter 4.

Foundation Level | Handbook | © IREB 15 | 158

Understanding possible processes and working structures enables Requirements Engineers

to define a way of working that fits with the specific needs of the system development

situation at hand. Processes and working structures are presented in Chapter 5.

Existing requirements can be managed with various practices. Requirements Engineers

should be able to understand which requirements management practices support them for

which tasks. Management practices are presented in Chapter 6.

Tools make RE more efficient. Requirements Engineers need to know how RE tools can

support them and how to select a suitable tool for their situation. Tool support is discussed

briefly in Chapter 7.

1.7 Further Reading

The RE terminology used in this handbook is defined in the CPRE Glossary of Requirements

Engineering Terminology [Glin2020]. Glinz and Wieringa [GlWi2007] explain the notion of

stakeholders. Lawrence, Wiegers, and Ebert [LaWE2001] briefly discuss the risks and pitfalls

of RE.

Gause and Weinberg [GaWe1989] wrote one of the first textbooks on RE, which is still worth

looking at. Pohl [Pohl2010], Robertson and Robertson [RoRo2012] and Wiegers and Beatty

[WiBe2013] are popular textbooks on RE. The course notes of Glinz [Glin2019] provide a

slide-based introduction to RE. The textbook by van Lamsweerde [vLam2009] presents a

goal-oriented approach to RE. Jackson [Jack1995] contributes an insightful collection of

essays about software requirements.

Please be aware that the official textbook for the IREB CPRE Foundation Level version 2.2

[PoRu2015] is no longer fully aligned with version 3.0 of the CPRE Foundation Level Syllabus,

on which this handbook is based. However, this textbook still provides a concise introduction

to RE and will be updated soon.

There are also textbooks in languages other than English. For example, Badreau and

Boulanger [BaBo2014] have written an RE textbook in French. The books by Ebert

[Eber2014] and Rupp [Rupp2014] are popular RE textbooks written in German.

Foundation Level | Handbook | © IREB 16 | 158

2 Fundamental Principles of Requirements

Engineering

In this chapter, you will learn about nine basic principles of Requirements Engineering (RE).

2.1 Overview of Principles

RE is governed by a set of fundamental principles that apply to all tasks, activities, and

practices in RE. A task is a coherent chunk of work to be done (for example, eliciting

requirements). An activity is an action or a set of actions that a person or group performs to

accomplish a task (for example, identifying stakeholders when eliciting requirements). A

practice is a proven way of how to carry out certain types of tasks or activities (for example,

using interviews to elicit requirements from stakeholders).

The principles listed in Table 2.1 form the basis for the practices presented in the subsequent

chapters of this handbook.

Table 2.1 Nine fundamental principles of Requirements Engineering

1. Value orientation: Requirements are a means to an end, not an end in itself

2. Stakeholders: RE is about satisfying the stakeholders’ desires and needs

3. Shared understanding: Successful systems development is impossible without a common basis

4. Context: Systems cannot be understood in isolation

5. Problem, requirement, solution: An inevitably intertwined triple

6. Validation: Non-validated requirements are useless

7. Evolution: Changing requirements are no accident, but the normal case

8. Innovation: More of the same is not enough

9. Systematic and disciplined work: We can’t do without in RE

2.2 The Principles Explained

2.2.1 Principle 1 – Value orientation: Requirements are a

means to an end, not an end in itself

The act of writing requirements is not a goal by itself. Requirements are useful—and the

effort invested in Requirements Engineering is justified—only if they add value

Foundation Level | Handbook | © IREB 17 | 158

[Glin2016], [Glin2008], cf. Section 1.2. We define the value of a requirement as being its

benefit minus its cost. The benefit of a requirement is the degree to which it contributes to

building successful systems (that is, systems that satisfy the desires and needs of their

stakeholders) and to reducing the risk of failure and costly rework in system development.

The cost of a requirement amounts to the cost for eliciting, validating, documenting, and

managing it.

Reducing the risk of rework during development is a constituent part of the benefit of a well-

crafted requirement. Detecting and fixing a missed or wrong requirement during

implementation or when the system is already in operation can easily cost one or two orders

of magnitude more than specifying that requirement properly right from the beginning.

Consequently, a significant amount of the benefit of requirements comes from costs saved

during the implementation and operation of a system.

In other words, the benefits of RE are often long-term benefits, whereas the costs are

immediate. This must be kept in mind when setting up a new project. Reducing costs in the

short term by spending less for RE has a price: it considerably increases the risk of expensive

rework in later stages of the project.

The value of Requirements Engineering can be considered to be the cumulative value of the

requirements specified. As customers typically pay for systems to be implemented, but not

for the requirements needed to do that, the economic value of RE is mostly an indirect one.

This effect is reinforced by the fact that the benefit of requirements that stem from reduced

rework costs is an indirect one: it saves costs during implementation and operation.

The economic effects of Requirements Engineering are mostly indirect ones; RE as such just

costs.

To optimize the value of a requirement, Requirements Engineers have to strike a proper

balance between the benefit and the cost of a requirement. For example, eliciting and

documenting a stakeholder’s need as a requirement eases the communication of this need

among all parties involved. This increases the probability that the system to be built will

eventually satisfy this need, which constitutes a benefit. The less ambiguously and the more

precisely the requirement is stated, the higher its benefit, because this reduces the risk of

costly rework due to misinterpretation of the requirements by the system architects and

development teams. On the other hand, increasing the degree of unambiguity and precision

of a requirement also increases the cost involved in eliciting and documenting the

requirement.

Actually, the amount of RE required to achieve requirements with optimal value depends on

numerous factors given by the specific situation in which requirements are being created

and used. Obviously, the risk of building a system that eventually does not satisfy the desires

and needs of its stakeholders, which may result in failure or costly rework, is the driving force

that determines the amount of RE required. First and foremost, the criticality of every

Foundation Level | Handbook | © IREB 18 | 158

requirement should be assessed in terms of the importance of the stakeholder(s) who state

the requirement (see Principle 2) and the impact of missing the requirement (Figure 2.1).

Figure 2.1 Assessing the criticality of a requirement [Glin2008]

In addition, the following influencing factors should be considered:

▪ Effort needed to specify the requirement

▪ Distinctiveness of the requirement (how much it contributes to the success of the

overall system)

▪ Degree of shared understanding between stakeholders and developers and among

stakeholders

▪ Existence of reference systems (that can serve as a specification by example)

▪ Length of feedback cycle (the time between getting a requirement wrong and

detecting the error)

▪ Kind of customer-supplier relationship

▪ Regulatory compliance required

We summarize this issue in two rules of thumb:

▪ The optimal amount of RE to be invested depends on the specific situation and is

determined by many influencing factors.

▪ The effort invested into RE should be inversely proportional to the risk you are willing

to take.

2.2.2 Principle 2 – Stakeholders: RE is about satisfying the

stakeholders’ desires and needs

The eventual goal of building a system is that the system, when it is used, solves problems

that its users need to solve and satisfies the expectations of further people—for example,

those who have ordered and paid for the system, or those who are responsible for security in

the organization that uses the system. Therefore, we have to figure out the needs and

Foundation Level | Handbook | © IREB 19 | 158

expectations of the people who have a stake in the system, the system’s stakeholders

[GlWi2007]. The core goals of RE are understanding the stakeholders’ desires and needs and

minimizing the risk of delivering a system that does not meet these desires and needs; see

Definition 1.2 in Section 1.2.

Every stakeholder has a role in the context of the system to be built—for example, user,

client, customer, operator, or regulator. Depending on the RE process used, the developers

of a system can also be stakeholders. This is frequently the case in agile and in market-

oriented development. A stakeholder may also have more than one role at the same time.

For every relevant stakeholder role, suitable people acting in this role must be selected as

representatives.

For stakeholder roles with too many individuals or when individuals are unknown, personas

(fictitious characters that represent a group of users with similar characteristics) can be

defined as a substitute. For systems that are already in use, users who provide feedback

about the system or ask for new features should also be considered as stakeholders.

It makes sense to classify the stakeholders into three categories with respect to the degree

of influence that a stakeholder has on the success of the system:

▪ Critical: not considering these stakeholders will result in severe problems and

probably make the system fail or render it useless.

▪ Major: not considering these stakeholders will have an adverse impact on the success

of the system but not make it fail.

▪ Minor: not considering these stakeholders will have no or minor influence on the

success of the system.

This classification is helpful when assessing the criticality of a requirement (see Figure 2.1)

and when negotiating conflicts between stakeholders (see below).

It is not sufficient to consider only the requirements of end users and customers. Doing this

would mean that we might miss critical requirements from other stakeholders, which can

easily lead to development projects that fail or overrun their budgets and deadlines.

Involving the right people in the relevant stakeholder roles is crucial for successful RE.

Practices for identifying, prioritizing, and working with stakeholders are discussed in

Chapter 4.

Stakeholders in different roles naturally have different viewpoints [NuKF2003] of a system

to be developed. For example, users typically want a system to support their tasks in an

optimal way, the managers who order the system want to get it at a reasonable cost, and the

organization’s chief security officer cares primarily about the security of the system. Even

stakeholders in the same role may have different needs. For example, in the group of end

users, casual users have user interface requirements that may differ strongly from those of

professional users.

Foundation Level | Handbook | © IREB 20 | 158

As a consequence, it is not sufficient to just collect requirements from stakeholders. It is vital

to identify inconsistencies and conflicts between the requirements of different stakeholders

and to resolve these, be it by finding a consensus, by overruling, or by specifying system

variants for stakeholders who factually have different needs; see Section 4.3.

2.2.3 Principle 3 – Shared understanding: Successful systems

development is impossible without a common basis

System development, including RE, is a multi-person endeavor. To make such an endeavor a

success, the people involved need a shared understanding of the problem and the

requirements that stem from it [GlFr2015].

RE creates, fosters, and secures shared understanding between and among the parties

involved: stakeholders, Requirements Engineers, and developers. We distinguish between

two forms of shared understanding:

▪ Explicit shared understanding is achieved through carefully elicited, documented, and

agreed requirements. This is the primary goal of RE in plan-driven processes.

▪ Implicit shared understanding is based on shared knowledge about needs, visions,

context, etc. In agile RE, when requirements are not fully specified in writing, reliance

on implicit shared understanding is key.

Both implicit and explicit shared understanding may be false, meaning that people believe

that they have a shared understanding of an issue but in fact interpret this issue in different

ways. Therefore, we can never rely blindly on shared understanding. Instead, the task of RE is

to create and foster shared understanding and also secure it—that is, assess whether there is

a true shared understanding. To limit the effort involved, it is vital to concentrate on shared

understanding about relevant things—that is, those aspects that lie within the context

boundary of a system (cf. Principle 4).

Even with a perfect shared understanding, important requirements may still be missed

because nobody considered them. Figure 2.2 illustrates different situations of shared

understanding with a simple example of a couple that wants to install a swing in their garden

for their children [Glin2019]. The sticky note in the middle symbolizes a written specification.

Foundation Level | Handbook | © IREB 21 | 158

Figure 2.2 Different situations of shared understanding—illustrated with an example of a couple

that wants to install a swing for their children

Proven practices for achieving shared understanding include working with glossaries

(Section 3.5), creating prototypes (Section 0), or using an existing system as a reference

point.

The main means for assessing true explicit shared understanding in RE is thoroughly

validating all specified requirements (cf. Principle 6 and Section 4.4). Practices for assessing

implicit shared understanding include providing examples of expected outcomes, building

prototypes, or estimating the cost of implementing a requirement. The most important

practice for reducing the impact of false shared understanding is using a process with short

feedback loops (Chapter 5).

There are factors that constitute enablers or obstacles of shared understanding. For

example, enablers are:

▪ Domain knowledge

▪ Domain-specific standards

▪ Previous successful collaboration

▪ Existence of reference systems known by all people involved

▪ Shared culture and values

▪ Informed (not blind!) mutual trust

Obstacles are:

▪ Geographic distance

▪ Supplier-customer relationship guided by mutual distrust

▪ Outsourcing

▪ Regulatory constraints

▪ Large and diverse teams

▪ High turnover among the people involved

Foundation Level | Handbook | © IREB 22 | 158

The lower the probability and impact of false shared understanding and the better the ratio

between enablers and obstacles, the more RE can rely on implicit shared understanding.

Conversely, the fewer enablers and the more obstacles to shared understanding we have and

the higher the risk and impact of false shared under-standing for a requirement, the more such

requirements have to be specified and validated explicitly.

2.2.4 Principle 4 – Context: Systems cannot be understood in

isolation

Requirements never come in isolation. They refer to systems that are embedded in a

context. While the term context in general denotes the network of thoughts and meanings

needed for understanding phenomena or utterances, it has a special meaning in RE.

Definition 2.1. Context (in RE):

The part of a system’s environment being relevant for understanding

the system and its requirements.

The context of a system is delimited by the system boundary and the context boundary

[Pohl2010] (see Figure 2.3).

Definition 2.2. Context boundary:

The boundary between the context of a system and those parts of the

application domain that are irrelevant for the system and its

requirements.

The context boundary separates the relevant part of the environment of a system to be

developed from the irrelevant part—that is, the part that does not influence the system to be

developed and, thus, does not have to be considered during Requirements Engineering.

Definition 2.3. System boundary:

The boundary between a system and its surrounding context.

The system boundary delimits the system as it shall be after its implementation and

deployment. The system boundary is often not clear initially and it may change over time.

Clarifying the system boundary and defining the external interfaces between a system and

the elements in its context are genuine RE tasks.

The system boundary frequently coincides with the scope of a system development.

Foundation Level | Handbook | © IREB 23 | 158

Definition 2.4. Scope:

The range of things that can be shaped and designed when developing

a system.

Sometimes, however, the system boundary and its scope do not match (see Figure 2.3).

There may be components within the system boundary that have to be reused as they are

(i.e., they cannot be shaped or designed), which means that they are out of scope. On the

other hand, there may be things in the system context that can be re-designed when the

system is developed, which means that they are in scope.

As the external interfaces reside at the system boundary, RE must determine which of these

interfaces are in scope (that means, they can be shaped and designed in the development

process) and which ones are given and out of scope.

It is not sufficient to consider just the requirements within the system boundary.

First, when the scope includes parts of the system context, as shown in Figure 2.3, context

changes within the scope may impact the system’s requirements. For example, when a

business process shall be partially automated by a system, it may be useful to adapt the

process in order to simplify its automation. Obviously, such adaptation impacts the

requirements of the system.

Figure 2.3 System, context, and scope

Second, there may be real-world phenomena in the system context that a system shall

monitor or control. Requirements for such phenomena must be stated as domain

requirements and must be adequately mapped to system requirements. For example, in a

car equipped with an automatic gearbox, there is a requirement that the parking position can

be engaged only when the car is not moving. In the context of a software system that

controls the gearbox, this is a domain requirement. In order to satisfy this requirement, the

controller needs to know whether or not the car is moving. However, the controller cannot

sense this phenomenon directly. Hence, the real-world phenomenon “car is not moving”

must be mapped to a phenomenon that the control system can sense—for example, input

Foundation Level | Handbook | © IREB 24 | 158

from a sensor that creates pulses when a wheel of the car is spinning. The domain

requirement concerning engaging the parking position is then mapped to a system

requirement such as “The gearbox control system shall enable the engagement of the

parking position only if no pulses are received from the wheel spinning sensors.”

Third, there may be requirements that cannot be satisfied by any system implementation

unless certain domain requirements and domain assumptions in the context of the system

hold. Domain assumptions are assumptions about real-world phenomena in the context of a

system. For example, consider an air traffic control system (ATS). The requirement “R1: The

ATS shall maintain accurate positions for all aircraft controlled by the system” is an

important system requirement. However, this requirement can be met only if the radar in the

context of the ATS satisfies the requirements of correctly identifying all aircraft in the

airspace controlled by the radar and correctly determining their position. In turn, these

requirements can be satisfied only if all aircraft spotted by the radar respond properly to the

interrogation signals sent by the radar.

Furthermore, requirement R1 can be met only if certain domain assumptions in the context

of the ATS hold—for example, that the radar is not jammed by a malicious attacker and that

no aircraft are flying at an altitude that is lower than the radar can detect.

RE goes beyond considering the requirements within the system boundary and defining the

external interfaces at the system boundary. RE must also deal with phenomena in the system

context.

Consequently, RE must also consider issues in the system context:

▪ If changes in the context may occur, how do they impact the requirements for the

system?

▪ Which requirements in the real-world context are relevant for the system to be

developed?

▪ How can such real-world requirements be mapped adequately to requirements for

the system?

▪ Which assumptions about the context must hold such that the system will work

properly and the requirements in the real world will be met?

2.2.5 Principle 5 – Problem, requirement, solution: An

inevitably intertwined triple

Problems, their solutions, and requirements are closely and inevitably intertwined

[SwBa1982]. Every situation in which people are not satisfied with the way they are doing

things can be considered as the occurrence of a problem. In order to eliminate that problem,

a socio-technical system may be developed and deployed. Requirements for that system

must be captured in order to make the system an effective solution to the problem.

Specifying requirements does not make sense if there is no problem to solve or if no solution

Foundation Level | Handbook | © IREB 25 | 158

will be developed. Neither does it make sense to develop a solution that is searching for a

problem to solve or for requirements to satisfy.

It is important to note that problems, requirements, and solutions do not necessarily occur in

this order. For example, when designing an innovative system, solution ideas create user

needs that have to be worked out as requirements and implemented in an actual solution.

Problems, requirements, and solutions can be intertwined in many ways:

▪ Hierarchical intertwinement: when developing large systems with a multi-level

hierarchy of subsystems and components, high-level requirements lead to high-level

design decisions, which in turn inform lower-level requirements that lead to lower-

level design decisions, etc.

▪ Technical feasibility: specifying non-feasible requirements is a waste of effort;

however, it may only be possible to assess the feasibility of a requirement when

exploring technical solutions.

▪ Validation: prototypes, which are a powerful means for validating requirements,

constitute partial solutions of the problem.

▪ Solution bias: different stakeholders may envisage different solutions for a given

problem, with the consequence that they specify different, conflicting requirements

for that problem.

The intertwinement of problems, requirements, and solutions also has consequences for the

development process for a system:

▪ Strictly separating RE from system design and implementation activities is rarely

possible. Therefore, strict waterfall development processes do not work well.

▪ Nevertheless, Requirements Engineers aim to separate problems, requirements, and

solutions from each other as far as possible when thinking, communicating, and

documenting. This separation of concerns makes RE tasks easier to handle.

Despite the inevitable intertwinement of problems, requirements, and solutions, Requirements

Engineers strive to separate requirements concerns from solution concerns when thinking,

communicating, and documenting.

2.2.6 Principle 6 – Validation: Non-validated requirements

are useless

When a system is developed, the final system deployed shall satisfy the stakeholders’

desires and needs. However, performing this check at the very end of development is very

risky. In order to control the risk of unsatisfied stakeholders from the beginning, validation of

requirements must start during RE (see Figure 2.4).

Foundation Level | Handbook | © IREB 26 | 158

Figure 2.4 Validation [Glin2019]

Definition 2.5. Validation:

The process of confirming that an item (a system, a work product,

or a part thereof) matches its stakeholders’ needs.

In RE, validation is the process of confirming that the documented requirements match the

stakeholders’ needs; in other words, confirming whether the right requirements have been

specified.

Validation is a core activity in RE: there is no specification without validation.

When validating requirements, we have to check whether:

▪ Agreement about the requirements has been achieved among the stakeholders

(conflicts resolved, priorities set)

▪ The stakeholders’ desires and needs are adequately covered by the requirements

▪ The domain assumptions (see Principle 4 above) are reasonable—that is, we can

expect that these assumptions can be met when the system is deployed and

operated

Practices for validating requirements are discussed in Section 4.4.

2.2.7 Principle 7 – Evolution: Changing requirements are no

accident, but the normal case

Every technical system is subject to evolution. Needs, businesses, and capabilities change

continuously. As a natural consequence, the requirements for systems that are expected to

satisfy needs, support businesses, and use technical capabilities will also change. Otherwise,

such systems and their requirements progressively lose their value and eventually become

useless.

Foundation Level | Handbook | © IREB 27 | 158

A requirement may change while Requirements Engineers are still eliciting other

requirements, when the system is under implementation, or when it is deployed and being

used.

There are many reasons that lead to requests to change a requirement or a set of

requirements for a system, for example:

▪ Changed business processes

▪ Competitors launching new products or services

▪ Clients changing their priorities or opinions

▪ Changes in technology

▪ Feedback from system users asking for new or changed features

▪ Detection of errors in requirements or detection of faulty domain assumptions

Requirements may also change due to feedback from stakeholders when validating

requirements, due to the detection of faults in previously elicited requirements, or due to

changed needs.

As a consequence, Requirements Engineers must pursue two seemingly contradictory goals:

▪ Permit requirements to change, because trying to ignore the evolution of

requirements would be futile.

▪ Keep requirements stable, because without some stability in the requirements, the

cost for change can become prohibitively high. Also, development teams cannot

develop systematically if requirements change on a daily basis.

Requirements Engineers need to manage the evolution of requirements. Otherwise, the

evolution will manage them.

Change processes for requirements that address both goals are discussed in Section 6.7.

2.2.8 Principle 8 – Innovation: More of the same is not

enough

While RE is concerned with satisfying the stakeholders’ desires and needs, Requirements

Engineers who just play the role of the stakeholders’ voice recorder, specifying exactly what

the stakeholders tell them, are doing the wrong job. Giving stakeholders exactly what they

want means missing out on the opportunity of doing things better than before.

Foundation Level | Handbook | © IREB 28 | 158

For example, imagine the following scenario. An insurance company wants to renew the

reporting system for its agents. The most frequently used report is a table with 18 columns,

which is about twice as wide as the screen when displayed on the agents’ laptop computers.

Viewing this report thus requires a lot of scrolling. The stakeholders therefore want to be able to

zoom in the report, using plus and minus buttons on the screen. In this situation, good

Requirements Engineers will not just record this as a requirement. Instead, they will start to ask

questions. It turns out that the company is going to replace the agents’ laptops with tablets.

Hence, implementing two-finger gestures instead of the required buttons will make zooming

much easier. Furthermore, it turns out that three columns in the report can be eliminated with a

slight change to the reporting rules, which the company agrees to make. Also, only six columns

of the report are always needed; the remaining columns are used only in special cases.

Taking this into account, the Requirements Engineers would suggest that the stakeholders

require that (1) the report shall show the same information as in the current system, minus

the content of the three eliminated columns; (2) when the report is opened, only the six

important columns are displayed in full width, while the other columns are collapsed to

minimal width; and (3) that agents can expand a collapsed column by tapping its header (and

collapse it again with another tap).

This way, the agents will get a system that does not simply add a workaround for viewing an

oversized report. Instead, the system will solve the agents’ problem with an innovative

feature for filtering information and will also feature an intuitive means of zooming.

This is how innovation emerges. Good Requirements Engineers are innovation-aware: they

strive not just to satisfy stakeholders but to make them happy, excited, or feel safe

[KSTT1984]. At the same time, they avoid the trap of believing that they know everything

better than the stakeholders do.

Good Requirements Engineers go beyond what their stakeholders tell them.

On a small scale, RE shapes innovative systems by striving for exciting new features and

ease of use. Beyond that, Requirements Engineers also need to look for the big picture,

exploring with the stakeholders whether there are any disruptive ways of doing things,

leading to large-scale innovation [MaGR2004].

Section 4.2 discusses several techniques for fostering innovation in RE.

2.2.9 Principle 9 – Systematic and disciplined work: We

can’t do without in RE

RE is not an art but a discipline, which calls for RE to be performed in a systematic and

disciplined way. Regardless of the process(es) used to develop a system, we need to employ

suitable RE processes and practices for systematically eliciting, documenting, validating,

and managing requirements. Even when a system is developed in an ad hoc fashion, a

systematic and disciplined approach to RE (for example, by systematically fostering shared

understanding, see Principle 3) will improve the quality of the resulting system.

Foundation Level | Handbook | © IREB 29 | 158

Agility and flexibility are not valid excuses for an unsystematic, ad hoc style of work in RE.

However, there is neither a universal RE process nor a universal set of RE practices that work

well in every given situation or at least in most situations: there is no “one size fits all” in RE.

Systematic and disciplined work means that Requirements Engineers:

▪ Configure an RE process that is well suited for the problem at hand and fits well with

the process used for developing the system (see Chapter 5).

▪ From the set of RE practices and work products available, select those that are best

suited for the given problem, context, and working environment (see Chapters 3, 4

and 6).

▪ Do not always use the same process, practices, and work products.

▪ Do not reuse processes and practices from past successful RE work without

reflection.

2.3 Further Reading

Glinz [Glin2008] discusses the value of quality requirements and of requirements in general

[Glin2016].

Glinz and Wieringa [GlWi2007] explain the notion and importance of stakeholders.

Glinz and Fricker [GlFr2015] discuss the role and importance of shared understanding.

The papers by Jackson [Jack1995b] and Gunter et al. [GGJZ2000] are fundamental for the

problem of requirements in context. The role of context in RE is also discussed by Pohl

[Pohl2010].

Gause and Weinberg [GaWe1989] discuss the interdependence of problems and solutions.

Swartout and Balzer [SwBa1982] were the first to point out that creating a complete

specification before starting implementation is rarely possible.

Validation is covered in any RE textbook. Grünbacher and Seyff [GrSe2005] discuss how to

achieve agreement by negotiating about requirements.

Kano et al. [KSTT1984] were among the first to stress the role of innovation. Maalej, Nayebi,

Johann, and Ruhe [MNJR2016] discuss the use of explicit and implicit user feedback for RE.

Maiden, Gitzikis, and Robertson [MaGR2004] discuss how creativity can foster innovation in

RE. Gorschek et al. [GFPK2010] outline a systematic innovation process.

Foundation Level | Handbook | © IREB 30 | 158

3 Work Products and Documentation Practices

Traditional Requirements Engineering (RE) calls for the writing of a comprehensive,

complete, and unambiguous requirements specification [IEEE830], [Glin2016]. While it is still

appropriate to create fully-fledged requirements specifications in many cases, there are

also many other cases where the cost of writing such specifications exceeds their benefit.

For example, fully-fledged requirements specifications are useful or even necessary when

tendering or outsourcing the design and implementation of a system or when a system is

safety-critical and regulatory compliance is required. On the other hand, where stakeholders

and developers join forces to define and develop a system iteratively, writing a

comprehensive requirements specification does not make sense. It is therefore vital in RE to

adapt the documentation to the project context and to select work products for

documenting requirements and requirements-related information that yield optimal value

for the project.

In this chapter, you will learn about the typical RE work products and how to create them.

3.1 Work Products in Requirements Engineering

There are a variety of work products that are used in RE.

Definition 3.1. Work product:

A recorded intermediate or final result generated in a work

process.

We consider the term artifact as a synonym for work product. We prefer the term work

product over artifact to express the connotation that a work product is the result of work

performed in a work process.

According to this definition, an RE work product can be anything that expresses

requirements, from a single sentence or diagram to a system requirements specification

that covers hundreds of pages. It is also important to note that a work product may contain

other work products.

3.1.1 Characteristics of Work Products

Work products can be characterized by the following facets: purpose, size, representation,

lifespan, and storage.

Table 3.1 gives an overview of typical work products used in RE along with their respective

purpose (that is, what the work product specifies or provides) and typical size. The table is

structured into four groups: work products for single requirements, coherent sets of

requirements, documents or documentation structures, and other work products.

Foundation Level | Handbook | © IREB 31 | 158

There are many different ways to represent a work product. In RE, representations based on

natural language, templates, and models are of particular importance. These are discussed in

Sections 3.2, 3.3, and 3.4, respectively. There are further representations, such as drawings

or prototypes, which are covered in Section3.7.

Every work product has a lifespan. This is the period of time from the creation of the work

product until the point where the work product is discarded or becomes irrelevant. We

distinguish between three categories of work products with respect to lifespan: temporary,

evolving, and durable work products.

Temporary work products are created to support communication and create shared

understanding (for example, a sketch of a user-system interaction created in a workshop).

Temporary work products are discarded after use; no metadata is kept about these work

products.

Evolving work products emerge in several iterations over time (for example, a collection of

user stories that grows in both the number of stories and the story content). Some metadata

(at least the owner, status, and revision history) should be kept for every evolving work

product. Depending on the importance and status of a work product, change control

procedures need to be applied when modifying an evolving work product.

Durable work products have been baselined or released (for example, a requirements

specification that is part of a contract or a sprint backlog that is implemented in a given

iteration). A full set of metadata must be kept to manage the work product properly and an

elaborate change process must be followed to change a durable work product (Chapter 6).

A temporary work product may become an evolving one when Requirements Engineers

decide to keep a work product and develop it further. In this case, some metadata should be

added in order to keep the evolution of the work product under control. When an evolving

work product is baselined or released, it changes its lifespan status from evolving to durable.

Table 3.1 Overview of RE work products

 Work product Purpose: The work product specifies /provides Size*

Single requirements

 Individual requirement A single requirement, typically in textual form S

 User story A function or behavior from a stakeholder’s perspective S

Coherent sets of requirements

 Use case A system function from an actor’s or user’s perspective S-M

Foundation Level | Handbook | © IREB 32 | 158

 Work product Purpose: The work product specifies /provides Size*

 Graphic model Various aspects, for example, context, function, behavior

(see Section 3.4)

M

 Task description A task that a system shall perform S-M

 External interface

description

The information exchanged between a system and an

actor in the system context

M

 Epic A high-level view of a stakeholder need M

 Feature A distinguishing characteristic of a system S-M

Documents or documentation structures

 System requirements

specification**

A comprehensive requirements document L-XL

 Product and sprint

backlog

A list of work items, including requirements M-L

 Story map A visual arrangement of user stories M

 Vision A conceptual imagination of a future system M

Other work products

 Glossary Unambiguous and agreed common terminology M

 Textual note or graphic

sketch

A memo for communication and understanding S

 Prototype A specification by example, particularly for

understanding, validating, and negotiating about

requirements

S-L

*: S: Small, M: Medium, L: Large, XL: Very large

**: Other examples are: business requirements specification, domain requirements

specification, stakeholder/user requirements specification or software requirements

specification

Foundation Level | Handbook | © IREB 33 | 158

Nowadays, most work products are stored electronically as files, in databases, or in RE tools.

Informal, temporary work products may also be stored on other media—for example, paper

or sticky notes on a Kanban board.

3.1.2 Abstraction Levels

Requirements and their corresponding work products occur at various abstraction levels—

from, for example, high-level requirements for a new business process, down to

requirements at a very detailed level, such as the reaction of a specific software component

to an exceptional event.

Business requirements, domain requirements, and stakeholder/user requirements typically

occur at a higher level of abstraction than system requirements. When a system consists of

a hierarchy of subsystems and components, we have system requirements at the

corresponding abstraction levels for subsystems and components.

When business requirements and stakeholder requirements are expressed in durable work

products—such as business requirements specifications, stakeholder requirements

specifications, or vision documents—they precede the specification of system requirements.

For example, in contractual situations, where a customer orders the development of a

system from a supplier, the customer frequently creates and releases a stakeholder

requirements specification. The supplier then uses this as the basis for producing a system

requirements specification. In other projects, business requirements, stakeholder

requirements, and system requirements may co-evolve.

Some work products, such as individual requirements, sketches, or process models, occur at

all levels. Other work products are specifically associated with certain levels. For example, a

system requirements specification is associated with the system level. Note that an

individual requirement at a high abstraction level may be refined into several detailed

requirements at more concrete levels.

The choice of the proper abstraction level particularly depends on the subject to be

specified and the purpose of the specification. For example, if the subject to be specified is a

low-level part of the problem to be solved, it will be specified at a rather low abstraction

level. It is important, however, not to mix requirements that are at different abstraction

levels. For example, in the specification of a healthcare information system, when writing a

detailed requirement about photos on client ID cards, the subsequent paragraph should not

state a general system goal such as reducing healthcare cost while maintaining the current

service level for clients. In small and medium-sized work products (for example, user stories

or use cases), requirements should be at more or less the same abstraction level. In large

work products such as a system requirements specification, requirements at different levels

of abstraction should be kept separate by structuring the specification accordingly

(Section 3.6).

Foundation Level | Handbook | © IREB 34 | 158

Requirements naturally occur at different levels of abstraction. Selecting work products that

are adequate for a given level of abstraction and properly structuring work products that

contain requirements at multiple abstraction levels is helpful.

3.1.3 Level of Detail

When specifying requirements, Requirements Engineers have to decide on the level of detail

in which the requirements shall be specified. However, deciding which level of detail is

appropriate or even optimal for a given requirement is a challenging task.

For example, in a situation where the customer and the supplier of a system collaborate

closely, it might be sufficient to state a requirement about a data entry form as follows: “The

system shall provide a form for entering the personal data of the customer.” In contrast, in a

situation where the design and implementation of the system are outsourced to a supplier

with little or no domain knowledge, a detailed specification of the customer entry form will be

necessary.

The level of detail to which requirements should be specified depends on several factors, in

particular:

▪ The problem and project context: the harder the problem and the less familiar the

Requirements Engineers and developers are with the project context, the more detail

is necessary.

▪ The degree of shared understanding of the problem: when there is low implicit shared

understanding (see Principle 3 in Chapter 2), explicit, detailed specifications are

required to create the necessary degree of shared understanding.

▪ The degree of freedom left to designers and programmers: less detailed

requirements give the developers more freedom.

▪ Availability of rapid stakeholder feedback during design and implementation: when

rapid feedback is available, less detailed specifications suffice to control the risk of

developing the wrong system.

▪ Cost vs. value of a detailed specification: the higher the benefit of a requirement, the

more we can afford to specify it in detail.

▪ Standards and regulations: Standards imposed and regulatory constraints may mean

that requirements have to be specified in more detail than would otherwise be

necessary.

There is no universally “right” level of detail for requirements. For every requirement, the

adequate level of detail depends on many factors. The greater the level of detail in the

requirements specified, the lower the risk of eventually getting something that has unexpected

or missing features or properties. However, the cost for the specification increases as the level

of detail increases.

Foundation Level | Handbook | © IREB 35 | 158

3.1.4 Aspects to be Considered

Regardless of the RE work products being used, several aspects need to be considered

when specifying requirements [Glin2019].

First, as there are functional requirements, quality requirements, and constraints (see

Section 1.1), Requirements Engineers have to make sure that they cover all three kinds of

requirements when documenting requirements. In practice, stakeholders tend to omit quality

requirements because they take them for granted.

They also tend to specify constraints as functional requirements. It is therefore important

that the Requirements Engineers get this right.

When looking at functional requirements, we observe that they pertain to different aspects,

as, for example, a required data structure, a required order of actions, or the required

reaction to some external event. We distinguish between three major aspects: structure and

data, function and flow, and state and behavior.

The structure and data aspect focuses on requirements concerning the static structure of a

system and the (persistent) data that a system must know in order to perform the required

functions and deliver the required results.

The function and flow aspect deals with the functions that a system shall provide and the

flow of control and data within and between functions for creating the required results from

given inputs.

The state and behavior aspect concentrates on specifying the state-dependent behavior of

a system—in particular, how a system shall react to which external event depending on the

system’s current state.

When dealing with quality requirements, such as usability, reliability, or availability, a quality

model—for example, the model provided by ISO/IEC 25010 [ISO25010]—can be used as a

checklist.

Within the quality requirements, performance requirements are of particular importance.

Performance requirements deal with:

▪ Time (e.g., for performing a task or reacting to external events)

▪ Volume (e.g., required database size)

▪ Frequency (e.g., of computing a function or receiving stimuli from sensors)

▪ Throughput (e.g., data transmission or transaction rates)

▪ Resource consumption (e.g., CPU, storage, bandwidth, battery)

Some people also consider the required accuracy of a computation as a performance

requirement.

Whenever possible, measurable values should be specified. When values follow a probability

distribution, specifying just the average does not suffice. If the distribution function and its

parameters cannot be specified, Requirements Engineers should strive to specify minimum

and maximum values or 95 percent values in addition to the averages.

Foundation Level | Handbook | © IREB 36 | 158

Documenting quality requirements beyond performance requirements is notoriously

difficult.

Qualitative representations, such as “The system shall be secure and easy to use,” are

ambiguous and thus difficult to achieve and validate.

Quantitative representations are measurable, which is a big asset in terms of systematically

achieving and validating a quality requirement. However, they raise principal difficulties (for

example, how can we state security in quantitative terms?) and can be quite expensive to

specify.

Operationalized representations state a quality requirement in terms of functional

requirements for achieving the desired quality. For example, a data security requirement

may be expressed in terms of a login function that restricts the access to the data and a

function that encrypts the stored data. Operationalized representations make quality

requirements testable but may also imply premature design decisions.

The often-heard rule “Only a quantified quality requirement is a good quality requirement” is

outdated and may lead to quality requirements having low or even negative value due to the

high effort involved in the quantification. Instead, a risk-based approach should be used

[Glin2008].

Qualitative representations of quality requirements suffice in the following situations:

▪ There is sufficient implicit shared understanding between stakeholders,

Requirements Engineers, and developers.

▪ Stakeholders, Requirements Engineers, and developers agree on a known solution

that satisfies the requirements.

▪ Stakeholders only want to give general quality directions and trust the developers to

get the details right.

▪ Short feedback loops are in place such that problems can be detected early.

When developers are able to generalize from examples, specifying quality requirements in

terms of quantified examples or comparisons to an existing system is a cheap and effective

way of documenting quality requirements.

Only in cases where there is a high risk of not meeting the stakeholders’ needs, particularly

when quality requirements are safety-critical, should a fully quantified representation or an

operationalization in terms of functional requirements be considered.

When specifying constraints, the following categories of constraints should be considered:

▪ Technical: given interfaces or protocols, components, or frameworks that have to be

used, etc.

▪ Legal: restrictions imposed by laws, contracts, standards, or regulations

▪ Organizational: there may be constraints in terms of organizational structures,

processes, or policies that must not be changed by the system.

▪ Cultural: user habits and expectations are to some extent shaped by the culture the

users live in. This is a particularly important aspect to consider when the users of a

Foundation Level | Handbook | © IREB 37 | 158

system come from different cultures or when Requirements Engineers and

developers are rooted in a different culture to the system’s users.

▪ Environmental: when specifying cyber-physical systems, environmental conditions

such as temperature, humidity, radiation, or vibration may have to be considered as

constraints; energy consumption and heat dissipation may constitute further

constraints.

▪ Physical: when a system comprises physical components or interacts with them, the

system becomes constrained by the laws of physics and the properties of materials

used for the physical components.

▪ Furthermore, particular solutions or restrictions demanded by important stakeholders

also constitute constraints.

Finally, requirements can only be understood in context (see Principle 4 in Chapter 2).

Consequently, a further aspect has to be considered, which we call context and boundary.

The context and boundary aspect covers domain requirements and domain assumptions in

the context of the system, as well as the external actors that the system interacts with and

the external interfaces between the system and its environment at the system boundary.

There are many interrelationships and dependencies between the aspects mentioned above.

For example, a request issued by a user (context) may be received by the system via an

external interface (boundary), trigger a state transition of the system (state and behavior),

which initiates an action (function) followed by another action (flow) that requires data with

some given structure (structure and data) to provide a result to the user (context) within a

given time interval (quality).

Some work products focus on a specific aspect and abstract from the other aspects. This is

particularly the case for requirements models (Section 3.4). Other work products, such as a

system requirements specification, cover all these aspects. When different aspects are

documented in separate work products or in separate chapters of the same work product,

these work products or chapters must be kept consistent with each other.

Many different aspects need to be considered when documenting requirements, in particular,

functionality (structure and data, function and flow, state and behavior), quality, constraints,

and surrounding context (context and boundary).

3.1.5 General Documentation Guidelines

Independently of the techniques used, there are some general guidelines that should be

followed when creating RE work products:

▪ Select a work product type that fits the intended purpose.

▪ Avoid redundancy by referencing content instead of repeating the same content

again.

▪ Avoid inconsistencies between work products, particularly when they cover different

aspects.

Foundation Level | Handbook | © IREB 38 | 158

▪ Use terms consistently, as defined in the glossary.

▪ Structure work products appropriately—for example, by using standard structures.

3.1.6 Work Product Planning

Each project setting and each domain is different, so the set of resulting work products must

be defined for each endeavor. The parties involved, particularly the Requirements Engineers,

stakeholders, and project/product owners or managers need to agree upon the following

issues:

▪ In which work products shall the requirements be recorded and for what purpose (see

Table 3.1)?

▪ Which abstraction levels need to be considered (Section 3.1.2)?

▪ Up to which level of detail must requirements be documented at each abstraction

level (Section 03.1.3)?

▪ How shall the requirements be represented in these work products (for example,

natural-language-based or model-based, see below) and which notation(s) shall be

used?

Requirements Engineers should define the RE work products to be used at an early stage in a

project. Such early definition:

▪ Helps in the planning of efforts and resources

▪ Ensures that appropriate notations are used

▪ Ensures that all results are recorded in the right work products

▪ Ensures that no major reshuffling of information and “final editing” is needed

▪ Helps to avoid redundancy, resulting in less work and easier maintainability

3.2 Natural-Language-Based Work Products

Natural language, in both spoken and written form, has always been a core means for

communicating requirements for systems. Using natural language to write RE work products

has many advantages. In particular, natural language is extremely expressive and flexible,

which means that almost any conceivable requirement in any aspect can be expressed in

natural language. Furthermore, natural language is used in everyday life and is taught at

school, so no specific training is required to read and understand requirements written in

natural language.

Human evolution has shaped natural language as a means for spoken communication

between directly interacting people, where misunderstandings and missing information can

be detected and corrected rapidly. Hence, natural language is not optimized for precise,

unambiguous, and comprehensive communication by means of written documents. This

constitutes a major problem when writing technical documentation (such as requirements) in

natural language. In contrast to communication in spoken natural language, where the

communication is contextualized and interactive with immediate feedback, there is no

natural means for rapidly detecting and correcting ambiguities, omissions, and

Foundation Level | Handbook | © IREB 39 | 158

inconsistencies in texts written in natural language. On the contrary, finding such

ambiguities, omissions, and inconsistencies in written texts is difficult and expensive,

particularly for work products that contain a large amount of natural language text.

The problem can be mitigated to some extent by writing technical documentation

consciously, following proven rules and avoiding known pitfalls.

When writing requirements in natural language, Requirements Engineers can avoid many

potential misunderstandings by applying some simple rules:

▪ Write short and well-structured sentences. The rule of thumb is to express a single

requirement in one sentence in natural language. To achieve a good structure,

Requirements Engineers should use phrase templates (Section 3.33.3).

▪ Create well-structured work products. Besides writing well-structured sentences (see

above), work products written in natural language should also be well-structured as a

whole. A proven way to do this is by using a hierarchical structure of parts, chapters,

sections, and subsections, as is usually done in technical books. Document templates

(Section 3.3) help you to achieve a good structure.

▪ Define and consistently use a uniform terminology. Creating and using a glossary

(Section 3.5) is the core means for avoiding misunderstandings and inconsistencies

about terminology.

▪ Avoid using vague or ambiguous terms and phrases.

▪ Know and avoid the pitfalls of technical writing (see below).

When writing technical documents in natural language, there are some well-known pitfalls

that should be avoided or things that need to be used with care (see, for example,

[GoRu2003]).

Requirements Engineers should avoid writing requirements that contain the following:

▪ Incomplete descriptions. Verbs in natural language typically come with a set of

placeholders for nouns or pronouns. For example, the verb “give” has three

placeholders for who gives what to whom. When writing a requirement in natural

language, all placeholders of the verb used should be filled.

▪ Unspecific nouns. Using nouns such as “the data” or “the user” leaves too much room

for different interpretations by different stakeholders or developers. They should be

replaced by more specific nouns or be made more specific by adding adjectives or

assigning them a well-defined type.

▪ Incomplete conditions. When describing what shall be done, many people focus on the

normal case, omitting exceptional cases. In technical writing, this is a trap to avoid:

when something happens only if certain conditions are true, such conditions shall be

stated, providing both then and else clauses.

▪ Incomplete comparisons. In spoken communication, people tend to use comparatives

(for example, “the new video app is much better”) without saying what they are

comparing to, typically assuming that this is clear from the context. In technical

writing, comparisons should include a reference object, for example, “faster than 0.1

ms”.

Foundation Level | Handbook | © IREB 40 | 158

There are some further things that Requirements Engineers need to use with care, as they

constitute potential pitfalls:

▪ Passive voice. Sentences in passive voice have no acting subject. If a requirement is

stated in the passive voice, this may hide who is responsible for the action described

in the requirement, leading to an incomplete description.

▪ Universal quantifiers. Universal quantifiers are words such as all, always, or never,

which are used to make statements that are universally true. In technical systems,

however, such universal properties are rare. Whenever Requirements Engineers use a

universal quantifier, they need to reflect on whether they are stating a truly universal

property or whether they are instead specifying a general rule that has exceptions

(which they also need to specify). They should apply the same caution when using

“either-or” clauses, which, by their semantics, exclude any further exceptional cases.

▪ Nominalizations. When a noun is derived from a verb (for example, “authentication”

from “to authenticate”), linguists call this a nominalization. When specifying

requirements, Requirements Engineers need to handle nominalizations with care

because a nominalization may hide unspecified requirements. For example, the

requirement “Only after successful authentication, the system shall provide a user

access to (…)” implies that a procedure for authenticating users exists. When writing

such a requirement, therefore, the Requirements Engineer must check whether there

are also requirements about the procedure for authenticating legitimate users.

Natural language is a very powerful means for writing requirements. To mitigate the inherent

disadvantages of using natural language for technical documentation, Requirements Engineers

should follow proven writing rules and avoid well-known pitfalls.

3.3 Template-Based Work Products

As mentioned in Section 3.2 above, using templates is a proven means for writing good, well-

structured work products in natural language and thus mitigating some of the weaknesses of

natural language for technical writing. A template is a kind of ready-made blueprint for the

syntactic structure of a work product. When using natural language in RE, we distinguish

between three classes of templates: phrase templates, form templates, and document

templates.

Foundation Level | Handbook | © IREB 41 | 158

3.3.1 Phrase Templates

Definition 3.2. Phrase template:

A template for the syntactic structure of a phrase that expresses

an individual requirement or a user story in natural language.

A phrase template provides a skeleton structure with placeholders, in which Requirements

Engineers fill in the placeholders in order to get well-structured, uniform sentences that

express the requirements.

Using phrase templates is a best practice when writing individual requirements in natural

language and when writing user stories.

3.3.1.1 Phrase Templates for Individual Requirements

Various phrase templates for writing individual requirements have been defined, for

example, in [ISO29148], [MWHN2009], and [Rupp2014]. The standard ISO/IEC/IEEE 29148

[ISO29148] provides a single, uniform template for individual requirements as follows:

 [<Condition>] <Subject> <Action> <Objects> [<Restriction>].

Example: When a valid card is sensed, the system shall display the “Enter your PIN” message on

the dialog screen within 200 ms.

When formulating an action with this template, the following conventions about the use of

auxiliary verbs are frequently used in practice:

▪ Shall denotes a mandatory requirement.

▪ Should denotes a requirement that is not mandatory but strongly desired.

▪ May denotes a suggestion.

Will (or using a verb in the present tense without one of the auxiliary verbs mentioned above)

denotes a factual statement that is not considered as a requirement.

When there are no agreed meanings for auxiliary verbs in a project, or when in doubt,

definitions such as the ones given above should be made part of a requirements

specification.

EARS (Easy Approach to Requirements Syntax) [MWHN2009] provides a set of phrase

templates that are adapted to different situations as described below.

Foundation Level | Handbook | © IREB 42 | 158

Ubiquitous requirements (must always hold):

 The <system name> shall <system response>.

Event-driven requirements (triggered by an external event):

 WHEN <optional preconditions> <trigger> the <system name>

 shall <system response>.

Unwanted behavior (describing situations to be avoided):

 IF <optional preconditions> <trigger>, THEN the <system name>

 shall <system response>.

Note: Although the unwanted behavior template is similar to the event-driven one, Mavin et al.

provide a separate template for the latter, arguing that unwanted behavior (primarily due to

unexpected events in the context, such as failures, attacks, or things that nobody has thought

of), is a major source of omissions in RE.

State-driven requirements (apply only in certain states):

 WHILE <in a specific state> the <system name> shall <system response>.

Optional features (applicable only if some feature is included in the system):

 WHERE <feature is included> the <system name> shall <system response>.

In practice, sentences that combine the keywords WHEN, WHILE, and WHERE may be

needed to express complex requirements.

EARS has been designed primarily for the specification of cyber-physical systems. However,

it can also be adapted for other types of systems.

Foundation Level | Handbook | © IREB 43 | 158

3.3.1.2 Phrase Templates for User Stories

The classic phrase template for writing user stories was introduced by Cohn [Cohn2004]:

 As a <role> I want <requirement> so that <benefit>.

Example: “As a line manager, I want to make ad hoc inquiries to the accounting system so that I

can do financial planning for my department.”

While Cohn has designated the <benefit> part of the template as optional, it is standard

practice nowadays to specify a benefit for every user story.

Every user story should be accompanied by a set of acceptance criteria—that is, criteria that

the implementation of the user story must satisfy in order to be accepted by the

stakeholders. Acceptance criteria make a user story more concrete and less ambiguous.

This helps to avoid implementation errors due to misunderstandings.

3.3.2 Form Templates

Definition 3.3. Form template:

A template providing a form with predefined fields to be filled in.

Form templates are used to structure work products of medium size such as use cases.
Cockburn [Cock2001] introduced a popular form template for use cases. [Laue2002]
proposed a template for task descriptions.

Foundation Level | Handbook | © IREB 44 | 158

Table 3.2 shows a simple form template for use cases. Each flow step may be subdivided

into an action by an actor and the response by the system.

Foundation Level | Handbook | © IREB 45 | 158

Table 3.2 A simple form template for writing use cases

Name < A short active verb phrase>

Precondition <Condition(s) that must hold when the execution of the use case is

triggered>

Success end condition <State upon successful completion of use case>

Failed end condition <State upon failed execution of use case>

Primary actor <Actor name>

Other actors <List of other actors involved, if any>

Trigger <Event that initiates the execution of the use case>

Normal flow <Description of the main success scenario in a sequence of steps:

 <step 1> <action 1>

 <step 2> <action 2>

 ...

 <step n> <action n> ... >

Alternate flows <Description of alternative or exceptional steps, with references to

the corresponding steps in the normal flow>

Extensions <Extensions to the normal flow (if there are any), with references to

the extended steps in the normal flow>

Related information <Optional field for further information, such as performance,

frequency, relationship to other use cases, etc.>

Form templates are also useful for writing quality requirements in a measurable form
[Gilb1988].

Foundation Level | Handbook | © IREB 46 | 158

Table 3.3 provides a simple form template for measurable quality requirements, along with

an example.

Foundation Level | Handbook | © IREB 47 | 158

Table 3.3 A form template for specifying measurable quality requirements

Template Example

ID <Number of requirement> R137.2

Goal <Qualitatively stated goal> Confirm room reservations immediately

Scale <Scale for measuring the

requirement>

Elapsed time in seconds (ratio scale)

Meter <Procedure for measuring

the requirement>

Timestamping the moments when the user hits

the “Reserve” button and when the app has

displayed the confirmation. Measuring the time

difference.

Minimum <Minimum acceptable

quality to be achieved>

Less than 5 s in at least 95% of all cases

OK range <Value range that is OK and

is aimed at>

Between 0.5 and 3 s in more than 98% of all

cases

Desired <Quality achieved in the

best possible case>

Less than 0.5 s in 100% of all cases

3.3.3 Document Templates

Definition 3.4. Document template:

A template providing a predefined skeleton structure for a

document.

Document templates help to systematically structure requirements documents—for

example, a system requirements specification. RE document templates may be found in

standards, for example in [ISO29148]. The Volere template by Robertson and Robertson

[RoRo2012], [Vole2020] is also popular in practice. When a requirements specification is

included in the set of work products that a customer has ordered and will pay for, that

customer may prescribe the use of document templates supplied by the customer. In Figure

3.1, we show an example of a simple document template for a system requirements

specification.

Foundation Level | Handbook | © IREB 48 | 158

3.3.4 Advantages and Disadvantages

Using templates when writing RE work products in natural language has major advantages.

Templates provide a clear, re-usable structure for work products, make them look uniform,

and thus improve the readability of the work products. Templates also help you to capture

the most relevant information and make fewer errors of omission. On the other hand, there is

a potential pitfall when Requirements Engineers use templates mechanically, focusing on the

syntactic structure rather than on content, neglecting everything that does not fit the

template.

Part Sections

Part I: Introduction

 System purpose

Scope of system development

Stakeholders

Part II: System overview

 System vision and goals

System context and boundary

Overall system structure

User characteristics

Part III: System requirements

 Organized hierarchically according to system structure, using a hierarchical

numbering scheme for requirements

Per subsystem/component:

Functional requirements (structure and data, function and flow, state and behavior)

Quality requirements

Constraints

Interfaces

References

 Glossary (if not managed as a work product of its own)

Appendices

 Assumptions and dependencies

Figure 3.1 A simple system requirements specification template

Foundation Level | Handbook | © IREB 49 | 158

Using templates when writing RE work products in natural language improves the quality of the

work products provided that the templates are not misused as just a syntactic exercise.

3.4 Model-Based Work Products

Requirements formulated in natural language can easily be read by people provided they

can speak the language. Natural language suffers from ambiguity due to the imprecision of

semantics of words, phrases, and sentences [Davi1993]. This imprecision may lead to

confusion and omissions in requirements. When you read textual requirements, you will try to

interpret them in your own way. We often try to imagine these requirements in our mind.

When the number of requirements is manageable, it is possible to maintain insight and an

overview of the textual requirements. When the number of textual requirements becomes

“too big,” we lose the overview. That limit is different for each person. The number of textual

requirements is not the only reason for losing insight and overview. The complexity of the

requirements, the relationship between the requirements, and abstraction of the

requirements also contribute to this. You may have to read the requirements formulated in

natural language several times before you get a correct and complete picture that the

system must comply with. We have a limited ability to process requirements in natural

language.

Figure 3.2 Textual requirements versus modeled requirements

Foundation Level | Handbook | © IREB 50 | 158

A model is an abstract representation of an existing part of reality or a part of reality to be

created. Displaying the requirements (also) with a model (or picture) will contribute to

readers grasping the requirements. Such diagrammatic representation of a model is called a

diagram.

The diagram in Figure 3.2 shows at a glance what the system must provide, but only if you

have mastered the modeling language. It is evident that if you do not understand the

diagram, in this case a UML activity diagram, the picture will not contribute to a better

understanding of the requirements.

In the next section (3.4.1), the concept of a requirements model is explained. Modeling of

business requirements and goals is explained in Section 3.4.6. An important method for

describing the demarcation of a system is the context model. Examples of the context are

depicted in Section 3.4.2. Sections 3.4.3 to 3.4.5 give a number of examples of modeling

languages that are often used in systems engineering practice.

3.4.1 The Role of Models in Requirements Engineering

Like any language, a modeling language consists of grammatical rules and a description of

the meaning of the language constructs, see Section 3.4.1.1. Although a model is a visual

representation of reality, the language rules are important in order to understand the model

and the nuances in the model.

It is not always efficient or effective to summarize the requirements in a model. By

understanding the properties of a model, we can better determine when we can apply which

model, see Section 3.4.1.2.

Just as natural language has advantages and disadvantages for expressing the

requirements, so do models. If we observe these facts in applying a model, we can better

determine the added value of applying the "correct" model. This is discussed in Section

3.4.1.3.

Many models have already been standardized and are used in various fields of application,

see Section 3.4.1.4. Consider, for example, the construction of a house, where an architect

uses a standardized model to describe the house. One example for models used by building

architects are building information models (BIM) [ISO19650], that model the elements

required to plan, build, and manage buildings and other construction elements.

Another example is electronics, where the drawing of electronic diagrams is standardized so

that professionals can understand, calculate, and realize the electronics.

To determine whether a diagram is applied correctly, we can validate the quality criteria of a

diagram. These criteria are described in Section 3.4.1.5.

3.4.1.1 Syntax and Semantics

If you think about a natural language, for example your native language, it is defined by its

grammar and semantics.

Foundation Level | Handbook | © IREB 51 | 158

The grammar describes the elements (words and sentences) and the rules that the language

must obey. In a modeling language, this is called the syntax, see Figure 3.3. The syntax

describes which notation elements (symbols) are used in the language. It also describes how

these notation elements can be used in combination.

Figure 3.3 Modeling language syntax and semantics

The semantics defines the meaning of the notation elements and defines the meaning of the

combination of elements. Understanding the meaning of the notation elements is

fundamental for preventing the risk of the model being misinterpreted.

3.4.1.2 Properties of a Model

A requirements model is a conceptual model that depicts the requirements for the system to

be developed. A model is also used to represent the current situation to understand, analyze,

and explore the present problems. In this context, conceptual means that reality is reduced

to its essence. A model has a high level of abstraction and reduces reality to what is relevant

at this generic level.

A conceptual modeling language can be standardized (internationally) and is then referred to

as a formal modeling language. An example of this is the widespread and frequently applied

modeling language UML (Unified Modeling Language).

A model has a number of properties that are explored further in the following sections:

▪ A model is made for a specific purpose.

▪ A model gives a representation of reality.

Foundation Level | Handbook | © IREB 52 | 158

▪ A model is used to reduce information so that we can better understand reality or

focus on part of the reality.

A model is an abstract representation of an existing part of reality or a part of reality to be

created. The notion of reality includes any conceivable set of elements, phenomena, or

concepts, including other models. The modeled part of reality is called the original. The

process to describe the original can be descriptive or prescriptive.

Modeling the existing original is called descriptive modeling. It shows the current reality and

reflects the requirements that are met. If no model of the original is available yet, than such a

model is the result of the analysis of the current situation.

Modeling an original to be created is called prescriptive modeling. It indicates what future

reality is expected or required. If a model with descriptive properties exists for the given

situation, then a model with prescriptive properties can be derived from the original by

indicating which requirements will be new, changed, or are no longer needed. The

prescriptive model describes the ultimate future situation desired.

Reality can be complex. If we apply “too many” details, a model can be hard to grasp. This

complex reality can be simplified by reducing the amount of information in the model. In a

model, we can omit irrelevant information. Reducing the amount of information can give us a

better understanding of reality and allow us to understand the essence of this reality more

easily. Based on the intended purpose (first property) for which the model is applied, only the

relevant information is displayed in the model.

Please note, if "too much" information is reduced, a clouded or incorrect image of reality

may arise. Thus, careful consideration should be given to how much of the information can

be reduced without distorting reality.

There are several ways to reduce information:

▪ By compression or aggregation

 Aggregating information is a way to make information more abstract. The

information is stripped of irrelevant details and is therefore more compact. The

information is, as it were, condensed.

▪ By selection

 By selecting only the relevant information, and not everything, it is possible to

indicate what the subject under consideration is. The focus is on a specific part or

number of parts of the total.

Both ways of reducing information can also be applied together.

A model is a representation of reality and each model represents certain aspects of reality.

For example, a construction drawing shows the breakdown of the space in a building and an

electrical diagram shows the wiring of the electrical circuit.

Both models represent the building for a specific purpose. A model is made for a specific

purpose in a specific context. In the example above, the context is the design and/or

realization of a building. The various construction drawings represent information about a

Foundation Level | Handbook | © IREB 53 | 158

specific aspect of the building. This makes it immediately clear that a specific model can be

used only if it fits the purpose for which the model was made.

3.4.1.3 Advantages and Disadvantages of Modeling Requirements

Compared with natural languages, models have the following advantages, among others:

▪ The elements and their connections are easier to understand and to remember.

 A picture tells more than a thousand words. A picture, and also a model, can be easier

to grasp and to remember. Note that a model is not self-explanatory and needs extra

information—i.e., a legend, examples, scenarios, etc.

▪ The focus on a single aspect reduces the cognitive load needed to understand the

requirements modeled.

 Because a model has a specific purpose and a reduced amount of information,

understanding the reality modeled can require less effort.

▪ Requirements modeling languages have a restricted syntax that reduces possible

ambiguities and omissions.

 Because the modeling language (syntax and semantics) is simpler—i.e., limited

number of notation elements and stricter language rules compared with natural

language—the risk of confusion and omissions is smaller.

▪ Higher potential for automated analysis and processing of requirements.

 Because a modeling language is more formal (limited number of notation elements

and stricter language rules) than a natural language, it lends itself better to

automating the analysis or processing of requirements.

Despite the great advantages for visualizing requirements with models, models also have

their limitations.

▪ Keeping models that focus on different aspects consistent with each other is

challenging.

 If multiple models are used to describe the requirements, it is important to keep these

models consistent with each other. This requires a lot of discipline and coordination

between the models.

▪ Information from different models needs to be integrated for causal understanding.

 If multiple models are used, all models must be understood to enable a good

understanding of the requirements.

▪ Models focus primarily on functional requirements.

 The models for describing quality requirements and constraints are limited if not

lacking in specific context. These types of requirements should then be supplied in

natural language together with the models—for example, as a separate work product.

Foundation Level | Handbook | © IREB 54 | 158

▪ The restricted syntax of a graphic modeling language implies that not every relevant

item of information can be expressed in a model.

 Because a model is made for a specific purpose and context, it is not always possible

to record all requirements in the model or in multiple models. Requirements that

cannot be expressed in models are added to the model as natural language

requirements or as a separate work product.

Therefore, requirements models should always be accompanied by natural language

[Davi1995].

3.4.1.4 Application of Requirements Models

As indicated in the previous sections, there are common models for various contexts. For

example, in architecture, you have construction drawings, piping diagrams, electrical

diagrams, etc. to express the specifications of a building. In other contexts—for example,

software development—there are modeling languages that are useful in these types of

context. An important aspect in applying models is to use models that are common in the

context or that have been specially developed for a specific context.

Many modeling languages—for example, UML [OMG2017] or BPMN [OMG2013]—have been

standardized. When requirements are specified in a non-standard modeling language, the

syntax and semantics of the language should be explained to the reader—for example, via a

legend.

Models are used to describe the requirements from a certain perspective. In system

development, functional requirements are categorized in the following perspectives (see

also Section 3.1.4):

▪ Structure and data

 Models that focus on the static structural properties of a system or a domain

▪ Function and flow

 Models that focus on the sequence of actions required to produce the required

results from given inputs or the actions required to execute a (business) process,

including the flow of control and data between the actions and who is responsible for

which action

▪ State and behavior

 Models that focus on the behavior of a system or the life cycle of business objects in

terms of state-dependent reactions to events or the dynamics of component

interaction

The nature of the system being modified or built gives direction to the models to be used.

For example, if the nature of the system is to process information and relationships, then it is

expected that there are quite a lot of functional requirements that describe this information

and these relationships. As a result, we use a matching modeling language that lends itself to

modeling data and its structure.

Foundation Level | Handbook | © IREB 55 | 158

Naturally, a system will consist of a combination of the above perspectives. It follows that a

system needs to be modeled from multiple perspectives. Sections 3.4.3 to 3.4.5 elaborate

the different models for each perspective in more detail.

Before the requirements are elicited and documented—for example with models—an

inventory is taken of goals and context. These can also be modeled, see Sections 3.4.6

respectively 3.4.2.

Applying models helps us mainly in the following ways:

▪ Specifying (primarily functional) requirements in part or even completely, as a means

of replacing textually represented requirements

▪ Decomposing a complex reality into well-defined and complementing aspects; each

aspect being represented by a specific model, helping us to grasp the complexity of

the reality

▪ Paraphrasing textually represented requirements in order to improve their

comprehensibility, in particular with respect to relationships between them

▪ Validating textually represented requirements with the goal of uncovering omissions,

ambiguities, and inconsistencies

Modeling the requirements also helps with structuring and analyzing knowledge. You can use

diagrams to structure your own thoughts to get a better understanding of the system and its

context.

3.4.1.5 Quality Aspects of a Requirements Model

This is a supplementary section for which there will be no questions in the CPRE Foundation

level exam.

A substantial part of the requirements models are diagrams or graphical representations.

The quality of the requirements model is determined by the quality of the individual diagrams

and their mutual relationships. In turn, the quality of the individual diagrams is determined by

the quality of the model elements within the diagrams.

The quality of the requirements models and model elements can be assessed against three

criteria [LiSS1994]:

▪ Syntactic quality

▪ Semantic quality

▪ Pragmatic quality

The syntactic quality expresses the extent to which a single model element (graphical or

textual), requirements diagram, or requirements model complies with the syntactic

specifications. If, for example, a model that describes the requirements as a class model

contains modeling elements that are not part of the syntax, or model elements are misused,

then this will decrease the syntactic quality of the model. A stakeholder of this model—for

example, a tester—might misinterpret the information that is represented by the model. This

might eventually lead to inappropriate test cases.

Foundation Level | Handbook | © IREB 56 | 158

Requirements modeling tools provide facilities for checking the syntactic quality of the

models.

The semantic quality expresses the extent to which a single model element (graphical or

textual), the requirements diagram, or the requirements model correctly and completely

represents the facts.

Just like in natural language, semantics gives meaning to the words. If a term can have

different meanings or there are several terms that mean the same thing, this can lead to

miscommunication. The same applies to the semantics of modeling elements. If the

modeling elements are misinterpreted or applied incorrectly, the model may be

misinterpreted.

The pragmatic quality expresses the extent to which a single model element (graphical or

textual), the requirements diagram, or the requirements model is suitable for the intended

use—that is, whether the degree of detail and abstraction level is appropriate for the

intended use and whether the appropriate model is selected with respect to the domain or

context. This can be assessed if the purpose and the stakeholders of the diagram are known.

Intermediate versions of the model can be submitted to the stakeholders interested to

validate whether the diagrams fit their purpose.

During validation of the requirements, the quality of the modeling diagrams used is assessed

to make sure that these diagrams fit their intended purpose and usefulness.

3.4.1.6 Best of Both Worlds

As explained in the previous section, requirements that are expressed in textual or

visual/graphical form (i.e., via requirements models) have their advantages and

disadvantages. By using both textual and graphic representations of the requirements, we

can harness the power and benefits of both forms of representation.

Amending a model with textual requirements adds more meaning to the model. Another

useful combination is that we can link quality requirements and constraints to a model or

specific modeling element. This provides a more complete picture of the specific

requirements.

Using models can also support the textual requirements. Adding models and images to the

textual requirements supports these models for a better understanding and overview.

3.4.2 Modeling System Context

Chapter 2, Principle 4 introduces the notion that requirements never come in isolation and

that the system context, such as existing systems, processes, and users need to be

considered when defining the requirements for the new or changed system.

Context models specify the structural embedding of the system in its environment, with its

interactions to the users of the system as well as to other new or existing systems within the

relevant context. A context model is not a graphical description of the requirements but is

used to reveal some of the sources of the requirements. Figure 3.4 provides an abstract

Foundation Level | Handbook | © IREB 57 | 158

example of a system and its environment, with its interfaces to the users of the system and

its interfaces to other systems. Thus, context diagrams help to identify user interfaces as

well as system interfaces. If the system interacts with users, the user interfaces must be

specified in a later step during RE.

If the system interacts with other systems, the interfaces to these systems must be defined

in more detail in a later step. Interfaces to other systems may already exist or may need to

be developed or modified.

Figure 3.4 A system in its context

Even if there is no standardized modeling language for context models, context models are

frequently represented by:

▪ Data flow diagrams from structured analysis [DeMa1978]

▪ UML use case diagrams [OMG2017]

▪ Note: the UML use case model consists of two elements; the UML use case diagram

(see Figure 3.6) and the use case specification (Section 3.4.2.2). This chapter focuses

on modeling with the UML use case diagrams.

▪ Tailored box-and-line diagrams [Glin2019]

In the systems engineering domain, SysML block definition diagrams [OMG2018] can be

adapted to express context models by using stereotyped blocks for the system and the

actors.

Foundation Level | Handbook | © IREB 58 | 158

In the next two subsections, we introduce the notation of data flow diagrams (DFD) and UML

use case diagrams to model the context of a system. These two examples do not describe

the complete context but emphasize the context from a specific viewpoint.

3.4.2.1 Data Flow Diagram

The system context can be viewed from different perspectives. The structured analysis of

systems [DeMa1978] talks about the context diagram. This diagram is a special data flow

diagram (DFD) where the system is represented by one process (the system). Figure 3.5

shows an example of a context diagram.

Figure 3.5 Example of a context diagram using a DFD

The system is placed centrally in the model. It has a clear name so that the readers know

which system is being considered.

The rectangles around the system are terminators: customer, printer, and financial

administration. A terminator that provides information or services to the system is called a

source. A terminator that takes information or services from the system is called a sink. A

terminator can take either role depending on the data provided or retrieved, such as the

customer in the example above.

The arrows in the example show how the information from the terminators flows into the

system (source) and from the system to the terminators (sinks). The arrows are given a

logical name that describes what information is transferred. Irrelevant details are omitted at

the context diagram level. The information flow between the customer and the system

contains, for example, customer data. What information (name, date of birth, email address,

Foundation Level | Handbook | © IREB 59 | 158

telephone number, delivery address, billing address, etc.) makes up the customer data does

not have to be relevant yet for this level of abstraction.

The flow of information can consist of tangible (materials) and intangible (information)

objects. Also, at this conceptual level, there is no reference (yet) to how—email, website,

form, etc.—the information is provided.

Adding extra details to the context diagram can make it clearer to the stakeholders involved

and may help to improve the shared understanding. These details need to be worked out for

each individual situation.

Using a data flow diagram to model the context of a system provides some insights into the

interactions of the system with its environment, for example:

▪ The interfaces to people, departments, organizations, and other systems in the

environment

▪ The (tangible and intangible) objects that the system receives from the environment

▪ The (tangible and intangible) objects that is produced by the system and is delivered

to the environment

A data flow diagram indicates a clear boundary between the system and its environment.

The relevant users and systems of the environment are identified during elicitation of

requirements (Section 4.1). DFD context diagrams can help to structure the context to reach

a shared understanding of the system context and the system boundary.

3.4.2.2 UML Use Case Diagram

Another view of the context of a system can be reached from a functional perspective. The

UML use case diagram is a common approach for modeling the functional aspects of a

system and the system boundaries, along with the system’s interactions with users and other

systems. Use cases provide an easy way to systematically describe the various functions

within the defined scope from a user perspective. This is different to DFD context diagrams,

where the system is represented as a big black box.

Use cases were first proposed as a method for documenting the functions of a system in

[Jaco1992]. The UML use cases consists of use case diagrams with associated textual use

case specifications (see Section 3.3.2). A use case specification specifies each use case in

detail by, for example, describing the possible activities of the use case, its processing logic,

and preconditions and postconditions of the execution of the use case. The specification of

use cases is essentially textual—for example, via use case templates as recommended in

[Cock2001].

As mentioned, a UML use case diagram shows the functions (use cases) from the point of

view of the direct users and other systems that interact with the system under consideration.

The name of the use case is often composed of a verb and a noun. This gives a brief

description of the function offered by the system, as shown by the example in Figure 3.6.

Foundation Level | Handbook | © IREB 60 | 158

Figure 3.6 Example of a context diagram using a UML use case diagram

The actors are the direct users or systems that interact with the system under consideration.

The actor (user or system) that starts the use case receives the benefit that the use case

delivers (e.g., showing the status of an order to the customer). The association connects the

actor with the relevant use case but it does not document any direction or data flow (as is

done in DFDs); it expresses only that the actor receives the benefit from the use case.

A UML use case diagram describes the functionality that the system offers to its

environment. The separation between the functionality in the system and the actors in the

context is visualized with the system boundary (rectangle around the use cases, e.g., “book

ordering system”). Use case diagrams support sharpening of the system boundary and

checking whether the functional scope of the system at a high level is covered.

Each use case also includes a detailed use case specification, documenting the

preconditions, trigger, actions, postconditions, actors, and so forth. Use cases are usually

described using a template (Section 3.3). If the scenarios of a use case become complex or

large, the recommendation is to visualize the scenarios with UML activity diagrams, see

Section 3.4.4.1. The detailed specification of use cases is not part of context modeling and

can be elaborated at a later time, when this information becomes relevant.

3.4.3 Modeling Structure and Data

For functional requirements from the perspective of business objects (see Section 3.1.4),

different data models are available. A (business) object can be a tangible or intangible

object, such as a bicycle, pedal, bicycle bell, but also a training request, a shopping basket

with digital products, and so on. A (business) object is "something" in the real world. Some (or

maybe all) of these (business) objects are used by the system under consideration. The

system uses these objects as input to process, to persist, and/or to deliver output. Data

models are used to describe the (business) objects that must be known by the system. These

kinds of diagrams model the object, attributes of the object, and the relationships between

objects. For the sake of simplicity, we refer to modeling structure and data—these, however,

represents information structures between (business) objects in the real world.

Foundation Level | Handbook | © IREB 61 | 158

A number of common models for depicting structure and data are:

▪ Entity relationship diagrams (ERD) [Chen1976]

▪ UML class diagrams [OMG2017]. See Section 3.4.3.1

▪ SysML Block Definition Diagrams [OMG2018]. See Section 3.4.6.2

To explain the concept of modeling structure and data, this chapter uses the UML class

diagram as an example. UML, short for Unified Modeling Language, consists of an integrated

set of diagrams. This set of diagrams is a collection of best engineering practices and has

proven successful in modeling complex and large systems. UML was designed by Grady

Booch, James Rumbaugh, and Ivar Jacobson in the 1990s and it has been a standardized

modeling language since 1997.If more depth or a different model is desired, read the

literature referred to and practice with the desired modeling language.

3.4.3.1 UML Class Diagrams

UML is a collection of different models that can be used to describe a system. One of these

models is the class diagram. A class diagram depicts a set of classes and associations

between them. We discuss only the common and simple notation elements of this model. If

more depth is desired, we refer to the literature or the CPRE Advanced Level Requirements

Modeling.

In the overview below you will find the most common notation elements.

Figure 3.7 Subset of the modeling elements of UML class diagrams

Foundation Level | Handbook | © IREB 62 | 158

In a class model, you will find the concepts and terms that are relevant in the domain. These

concepts include a clear definition that is included in the glossary. With the use of data

models, the glossary is extended with information about the structure and coherence of the

terms and concepts. A clear definition and coherence of the terms used prevents

miscommunication about the matter under consideration.

Figure 3.8 shows a simplified model of the book ordering system (see examples of the

context in Section 3.4.2). The static information that the system needs to perform its

functionality—ordering a book—is modeled.

A customer orders a book and hence information is persisted for the classes Customer,

Order, and Book. A customer can place an order and therefore a relationship (association)

exists between the Customer and the Order. A customer can place multiple orders over time

and he/she only becomes a customer if he/she places an order. This information determines

the multiplicity: 1 customer places 1 or more orders.

The fact that a customer can order a book means that there is also a relationship between

the classes Order and Book. To keep the example simple, here, the customer can order only

one book at a time. Also, an order must contain at least one book. An order that has no book

is not an order.

In the class Book, the attribute inStock is also maintained. Information such as ”if the stock is

not sufficient to fulfill the order, then a print job is sent to the printer” cannot be modeled.

This is a type of information that cannot be modeled in a class diagram because it describes

a certain functionality of the system. This information is part of the requirements and should

be documented in another work product. It can be added as a textual requirement that

accompanies the class diagram, or be modeled with another diagram—for example, a UML

activity diagram (see Section 3.4.4.1).

Figure 3.8 Example of a simple UML class diagram

Foundation Level | Handbook | © IREB 63 | 158

3.4.4 Modeling Function and Flow

Function and flow describe how the (sub)system shall transform input into output. We can

visualize this type of requirement with models that depict function and flow.

Unlike modeling data, which essentially needs only one diagram type, function and flow can

be viewed from different angles. Depending on the needs of the stakeholders to take the

next step in the development process, more than one model might be needed to document

the requirements about function and flow.

Some common models for depicting function and flow are:

▪ UML use case diagram [OMG2017]. See Section 3.4.2.2

▪ UML activity diagram [OMG2017]. See Section 3.4.4.1

▪ Data flow diagram [DeMa1978]. See Section 3.4.2.1

▪ Domain story models [HoSch2020]. See Section 3.4.6.3

▪ Business Process Modeling Notation (BPMN) [OMG2013].

Excurse: BPMN process models are used to describe business processes or technical

processes. BPMN is frequently used to express business process models.

To explain the concept of modeling function and flow, we limit this section to a few examples

of UML diagrams. If more depth or a different model is desired, read the literature referred to

and practice with the relevant modeling language.

3.4.4.1 UML Activity Diagram

UML activity models are used to specify system functions. They provide elements for

modeling actions and the control flow between actions. Activity diagrams can also express

who is responsible for which action. Advanced modeling elements (not covered by this

handbook) provide the means for modeling data flow.

A UML activity diagram expresses the control flow of activities of a (sub)system. Flow

thinking comes from visualizing program code with flow charts (according to [DIN66001],

[ISO5807]). This helped programmers to conceive and understand complex structures and

flows in programs. With the introduction of UML [OMG2017], a model has been introduced

for visualizing activities and actions from a functional perspective.

In the overview below you will find the basic notation elements.

Foundation Level | Handbook | © IREB 64 | 158

Figure 3.9 Basic notation elements of the UML activity diagram

With this set of basic notation elements, you can set up a simple sequential activity diagram.

If more control is required, the model can be extended with decisions and parallel flows of

activities using the notation elements below.

Figure 3.10 Decisions and parallel flows in a UML activity diagram

Activity diagrams can be used to specify the processing logic of use case scenarios in detail

(see Section 3.3.2). Activity diagrams are created to visualize the scenarios, which are

processes with activities and processing logic. As long as the diagram remains

understandable, the main scenario can be modeled jointly with the alternative scenarios and

the exception scenarios as part of the same diagram.

Figure 3.11 gives a simple example of the book ordering system. This simplified flow of action

starts when the customer sends in their order. First, the Order and the Customer information

are validated to determine whether all (necessary) information is supplied. If either the Order

or the Customer information is invalid (incorrect or insufficient), then a notification is sent to

Foundation Level | Handbook | © IREB 65 | 158

the customer and the order process is canceled. The basic scenario is that the Order and

Customer information are valid. The scenario that the Order or Customer information is

invalid is called an exceptional flow and handles a functional faulty condition in the process.

If both Order and Customer information are correct, then the stock is checked. If there is a

sufficient number of products in stock, the Order is picked and sent to the Customer. An

alternative flow is started if there are insufficient products in stock. A print job request is sent

to the Printer and a notification for a redelivery is sent to the Customer.

Figure 3.11 Example of a UML activity diagram

Within the book ordering system, there are also other flows that are separated from the

order and delivery process. For example, the payment, redelivery, and invoice processes

have separate flows to allow a clear separation of concerns. If, for example, the decision is

taken to no longer keep any products in stock, then the order and delivery process still

applies. If changes are needed in this flow, these changes may not affect the other flows.

This decomposition of functionality helps to keep things simple and clear.

Foundation Level | Handbook | © IREB 66 | 158

3.4.5 Modeling State and Behavior

Functional requirements that describe the behavior, states, and transitions of a (sub)system

or that of a business object are requirements in the behavioral perspective. An example of a

system state is On, Standby, or Off. A business object can have a life cycle that goes through

a number of prescribed states. For example, a business object Order can be in the following

states: Placed, Validated, Paid, Shipped, and Completed.

A technique widely used to describe the behavior of a system is statecharts [Hare1988].

Statecharts are state machines with states that are decomposed hierarchically and/or

orthogonally. State machines, including statecharts, can be expressed in the UML modeling

language [OMG2017] with state machine diagrams (also called state diagrams).

State diagrams describe state machines that are finite. This means that these systems

eventually reach a final state. A state diagram shows the states that the system or an object

can take. It also indicates how to switch state—that is, the state transition. A system does

little by itself. Switching the state requires a trigger from the system or from the environment

of the system.

Common models for representing behavior and states include:

▪ Statecharts [Hare1988]

▪ UML state diagram [OMG2017]

3.4.5.1 UML State diagram

To explain the concept of modeling behavior and states, this chapter uses the UML state

diagram as an example. If more depth or a different model is desired, read the literature

referred to and practice with the relevant modeling language.

In the overview below you will find the basic notation elements.

Figure 3.12 Basic notation elements of the UML state diagram

As discussed at the beginning of the section, a state diagram can clarify the states an object

can take. We see here an opportunity to visualize additional (and partly redundant)

Foundation Level | Handbook | © IREB 67 | 158

information of an object. Imagine that you order a book on a website and you want to track

the status of your order. An order is used in the real world and is modeled as a business

object in a class diagram (see Figure 3.8) with, most likely, an attribute status. The class

diagram indicates that the attribute status can assume a limited number of values, such as

Validated, Paid, Delivered, Canceled, and so on. The class diagram does not describe the

order of possible status changes. A class diagram does not describe the behavior of the

system in a certain "status" either. This can be made clear with a UML state diagram—for

example, that an offered order cannot go directly to the status Delivered without the

customer having paid for the order.

Figure 3.13 gives an example of a state diagram of the book ordering system. In the class

diagram (Figure 3.8) of the book ordering system, an object Order is modeled. This object

has an attribute status that can have a limited number of values. These values are listed and

explained in the class diagram. What a class diagram does not describe is the sequence in

which the order is processed. A state diagram visualizes the states and transitions between

the states, making it clear what the sequence of the order status is. The state diagram

shows, for example, that the order cannot be sent before it is completely picked (transition

between the states Picked and Sent). Also, if the order is in the state Sent, the next state can

only be Paid. A transition from Sent to Handled is not possible. This diagram also makes clear

that payment happens after the book is sent. You can ask the stakeholders whether this is

what they need or have requested.

A transition may direct to the same status. This situation is visible in the state Picked. Each

time the order is not picked to completion, it stays in the same state to prevent it from

sending an incomplete order. Only when the order is completely picked is it then sent to the

customer.

Figure 3.13 Example of a UML state diagram

A few months after the release of the book ordering system, customers complained that

they did not have the ability to cancel an order. It was agreed that a customer could cancel

the order in each state of the order process. Modeling this new requirement means that a

Foundation Level | Handbook | © IREB 68 | 158

transition to Canceled is needed from each state. This might make the diagram difficult to

read. Adding a textual requirement to describe this behavior might be a way to keep the

model simple for the audience.

3.4.6 Supplementary models

At the CPRE foundation level, the understanding and application of models is restricted to

selected, important model types. There are further model types that are used in

Requirements Engineering. The following subsections provide some additional examples for

models that are supplementary and will not be questioned in the CPRE Foundation level

exam.

3.4.6.1 Modeling Goals

Business requirements describe a business goal or need. They describe the end result that

the solution must meet and with which the (business) problem is solved, see Chapter 2,

Principle 5. To ensure that the focus is on solving the problem and that the effort focuses on

adding value, goals are carefully described. In Requirements Engineering, there are several

ways to document goals. The most common one is the use of natural language (Section 3.2)

or templates (Section 3.3). Template-based documentation forms can be found, for

instance, in [Pich2010], [Pohl2010], or [RoRo2012].

There are also some model-based notations for documenting goals. The easiest and most

common notation is an AND/OR tree [AnPC1994]. AND/OR trees allow us to document goals

at different levels of detail and to link subgoals with goals using AND and OR relationships.

An AND relationship means that all subgoals need to be fulfilled to fulfill the goal. An OR

relationship is used to express that at least one of the subgoals needs to be fulfilled to fulfill

the goal.

More elaborate modeling approaches for goals can be found in:

▪ Goal-oriented requirements language (GRL) [GRL2020]

 This is a language that supports goal-oriented modeling and reasoning of

requirements, especially for dealing with non-functional requirements.

▪ Knowledge acquisition in automated specification (KAOS) [vLam2009]

 KAOS is a methodology that contains goal modeling. This enables analysts to build

requirements models and to derive requirements documents from KAOS goal

models.

▪ The i* framework is one of the most popular goal- and agent oriented modelling and

reasoning methods in the field. i* supports the creation of models representing an

organization or a socio-technical system. [FLCC2016] provides a comprehensive

overview of the i* framework and it application.

Foundation Level | Handbook | © IREB 69 | 158

Documenting goals (in textual or graphical form) is an important starting point for eliciting

requirements, referring the requirements to their rationale, and identifying sources—like

stakeholders—of the requirements, etc.

3.4.6.2 SysML block definition diagrams

Systems Modeling Language (SysML) [OMG2018] is a general-purpose modeling language

for systems engineering applications. SysML is a dialect of UML, which re-uses and extends

parts of UML.

SysML can be adopted for many different purposes. Block definition diagrams in SysML are

an extension of the UML class diagram. They can, for example, be adapted to express

context diagrams by using stereotyped blocks for the system and the actors. Block

definition diagrams can also be used to model the structure of a system in terms of the

system’s conceptual entities and the relationships between them.

3.4.6.3 Domain story models

Domain story models can be used to model function and flow, by specifying visual stories

about how actors interact with devices, artifacts and other items in a domain, typically using

domain-specific symbols [HoSch2020]. They are a means for understanding the application

domain in which a system will operate.

The techniques is meant to be very simply executable for telling a story, a board and sticky

notes could be enough. Gathering the relevant stakeholders who really know how the

business operates provoke meaningful discussion by telling stories that occur in the domain.

Domain story telling improves the shared understanding of a business process, and is used

to analyze and solve problems in the domain.

3.4.6.4 UML Sequence Diagram

The UML sequence diagram is used to depict the interaction between communication

partners and to model the dynamic aspect of systems. The dynamic aspect of systems that

a sequence diagram depict can be function & flow as well a state & behavior. Therefore, a

UML sequence diagram can be used for different purposes.

The communication partners in a UML sequence diagram are actors, systems, components,

and/or objects within a system. The interaction displays the sequence of messages (a

scenario) between these communication partners. The interaction that takes place between

the communication partners realizes the purpose of a scenario, respectively (a part) of a use

case.

Foundation Level | Handbook | © IREB 70 | 158

In the overview below you will find the basic notation elements.

Figure 3.14 Basic notation elements of the UML sequence diagram

A lifeline in a scenario depicts the role in the scenario, meaning the instance of an actor.

When sequence diagrams are modeled, the instance name of an actor or object is often

omitted. The roles that participate in the communication interact with each other by sending

messages. There are two types of messages that are used in the interaction.

Figure 3.15 Basic notation elements of messaging in the UML sequence diagram

A message can also be sent from or to objects outside the scenario. This is represented as a

filled-in circle. The sender or receiver of these kinds of messages may be unknown.

Foundation Level | Handbook | © IREB 71 | 158

Figure 3.16 Messages from and to an object outside the scenario

Figure 3.17 shows a model of the scenario in which a customer orders a book and that

specific book is out of stock. The Customer asks to place an Order. If the Order is invalid, a

notification that the Order is canceled is returned. If the Order is valid, the stock is checked

and if a book is out of stock, a print job is sent to the Printer.

This is a synchronous message because we are awaiting to receive the book – even it might

take some time to print the book. A notification is sent to the Customer that the book is out

of stock and will be redelivered. The Order is deactivated until the book is delivered by the

Printer.

When the book is received from the Printer, the Ordering system is activated again. The

order is picked and sent to the Customer. This completes the Order and a last notification of

the status is sent to the Customer.

Figure 3.17 Example of a UML sequence diagram

Foundation Level | Handbook | © IREB 72 | 158

3.5 Glossaries

Glossaries are a core means of establishing shared understanding of the terminology used

when developing a system: they help avoid people involved as stakeholders or developers

using and interpreting the same terms in different ways.

A good glossary contains definitions for all terms that are relevant for the system, be they

context-specific terms or everyday terms that are used with a special meaning in the

context of the system to be developed. A glossary should also define all abbreviations and

acronyms used. If there are synonyms (that is, different terms denoting the same thing), they

should be marked as such. Homonyms (that is, identical terms that denote different things)

should be avoided or at least marked as such in the glossary.

There are a couple of rules that guide the creation, use, and maintenance of the glossary in a

system development project.

▪ Creation and maintenance. To ensure that the terminology defined in the glossary is

consistent and always up to date, it is vital that the glossary is managed and

maintained centrally over the entire course of a project, with one person or a small

group being responsible for the glossary. When defining terms, it is important that the

stakeholders are involved and agree on the terminology.

▪ Usage. In order to get the full benefit of a glossary, its use must be mandatory. Work

products should be checked for proper glossary usage. Obviously, this means that

everybody involved in a project must have read access to the glossary.

When an organization develops related systems in multiple projects, it makes sense to

create a glossary at the enterprise level in order to achieve consistent terminology across

projects.

Creating, maintaining, and using a glossary consistently avoids errors and misunderstandings

concerning the terminology used. Working with glossaries is a standard best practice in RE.

3.6 Requirements Documents and Documentation Structures

It is not sufficient to work with requirements at the level of individual requirements.

Requirements must be collated and grouped in suitable work products, be they explicit

requirements documents or other RE-related documentation structures (such as a product

backlog).

Document templates (see Section 3.3.3) may be used to organize such documents with a

well-defined structure in order to create a consistent and maintainable collection of

requirements. Document templates are available in literature [Vole2020], [RoRo2012] and in

standards [ISO29148]. Templates may also be reused from previous, similar projects or may

be imposed by a customer. An organization may also decide to create a document template

as an internal standard.

Foundation Level | Handbook | © IREB 73 | 158

A requirements document may also contain additional information and explanations—for

example, a glossary, acceptance criteria, project information, or characteristics of the

technical implementation.

Frequently used requirements documents are:

▪ Stakeholder requirements specification: the stakeholders’ desires and needs that shall

be satisfied by building a system, seen from the stakeholders’ perspective. When a

customer writes a stakeholder requirements specification, it is called a customer

requirements specification.

▪ User requirements specification: a subset of a stakeholder requirements specification,

covering only requirements of stakeholders who are prospective users of a system.

▪ System requirements specification: the requirements for a system to be built and its

context so that it satisfies its stakeholders’ desires and needs.

▪ Business requirements specification: the business goals, objectives, and needs of an

organization that shall be achieved by employing a system (or a collection of

systems).

▪ Vision document: a conceptual imagination of a future system, describing its key

characteristics and how it will create value for its users.

Frequently used alternative documentation structures are:

▪ Product backlog: a prioritized list of work items, covering all requirements that are

needed and known for the product

▪ Sprint backlog: a selected subset of a product backlog with work items that will be

realized in the next iteration

▪ Story map: a visual two-dimensional organization of user stories in a product backlog

with respect to time and content

There is no standard or universal requirements document or documentation structure.

Accordingly, documents or documentation structures should not be reused from previous

projects without reflection.

▪ The actual choice depends on several factors, for example:

▪ The development process chosen

▪ The project type and domain (for example, tailor-made solution, product

development, or standard product customizing)

▪ The contract (a customer may prescribe the use of a given documentation structure)

▪ The size of the document (the larger the document, the more structure is needed)

Foundation Level | Handbook | © IREB 74 | 158

3.7 Prototypes in Requirements Engineering

Prototypes play an important role both in engineering and design.

Definition 3.5 Prototype:

1. In manufacturing: A piece which is built prior to the start of

mass production.

2. In software and systems engineering: A preliminary, partial

realization of certain characteristics of a system.

3. In design: A preliminary, partial instance of a design solution.

Prototypes in software and systems engineering are used for three major purposes

[LiSZ1994]:

Exploratory prototypes are used to create shared understanding, clarify requirements, or

validate requirements at different levels of fidelity. Such prototypes constitute temporary

work products that are discarded after use. Exploratory prototypes may also be used as a

means of specification by example. Such prototypes must be treated as evolving or durable

work products.

Experimental prototypes (also called breadboards) are used to explore technical design

solution concepts, in particular with respect to their technical feasibility. They are discarded

after use. Experimental prototypes are not used in RE.

Evolutionary prototypes are pilot systems that form the core of a system to be developed.

The final system evolves by incrementally extending and improving the pilot system in

several iterations. Agile system development frequently employs an evolutionary

prototyping approach.

Requirements Engineers primarily use exploratory prototypes as a means for requirements

elicitation and validation. In elicitation, prototypes serve as a means of specification by

example. In particular, when stakeholders cannot express what they want clearly, a

prototype can demonstrate what they would get, which helps them shape their

requirements. In validation, prototypes are a powerful means for validating the adequacy

(see Section 3.8) of requirements.

Exploratory prototypes can be built and used with different degrees of fidelity. We

distinguish between wireframes, mock-ups, and native prototypes.

Wireframes (also called paper prototypes) are low-fidelity prototypes built with paper or

other simple materials that serve primarily for discussing and validating design ideas and

user interface concepts. When prototyping digital systems, wireframes may also be built

with digital sketching tools or dedicated wireframing tools. However, when using a digital tool

for wireframing, it is important to retain the essential properties of a wireframe: it can be built

quickly, modified easily, and does not look polished nor resemble a final product.

Foundation Level | Handbook | © IREB 75 | 158

Mock-ups are medium-fidelity prototypes. When specifying digital systems, they use real

screens and click flows but without real functionality. They serve primarily for specifying and

validating user interfaces. Mock-ups give users a realistic experience of how to interact with

a system through its user interface. They are typically built with dedicated prototyping tools.

Native prototypes are high-fidelity prototypes that implement critical parts of a system to an

extent that stakeholders can use the prototype to see whether the prototyped part of the

system will work and behave as expected.

They serve both for specification by example and for thorough validation of critical

requirements. Native prototypes may also be used to explore and decide about

requirements variants for some aspect—for example, two different possible ways of

supporting a given business process.

Depending on the degree of fidelity, exploratory prototypes can be an expensive work

product. Requirements Engineers have to consider the trade-off between the cost of

building and using prototypes and the value gained in terms of easier elicitation and reduced

risk of inadequate or even wrong requirements.

3.8 Quality Criteria for Work Products and Requirements

Obviously, Requirements Engineers should strive to write good requirements that meet given

quality criteria. RE literature and standards provide a rich set of such quality criteria.

However, there is no general consensus about which quality criteria shall be applied for

requirements. The set of criteria presented in this subsection aims to provide a proven

practice at foundation level.

Modern RE follows a value-oriented approach to requirements (see Principle 1 in Chapter 2).

Consequently, the degree to which a requirement fulfills the given quality criteria shall

correspond to the value created by this requirement. This has two important consequences:

▪ Requirements do not have to fully adhere to all quality criteria.

▪ Some quality criteria are more important than others.

We distinguish between quality criteria for single requirements and quality criteria for RE

work products such as RE documents or documentation structures.

For single requirements, we recommend using the following quality criteria:

▪ Adequate: the requirement describes true and agreed stakeholder needs.

▪ Necessary: the requirement is part of the relevant system scope, meaning that it will

contribute to the achievement of at least one stakeholder goal or need.

▪ Unambiguous: there is a true shared understanding of the requirement, meaning that

everybody involved interprets it in the same way.

▪ Complete: the requirement is self-contained, meaning that no parts necessary for

understanding it are missing.

▪ Understandable: the requirement is comprehensible to the target audience, meaning

that the target audience can fully understand the requirement.

Foundation Level | Handbook | © IREB 76 | 158

▪ Verifiable: the fulfillment of the requirement by an implemented system can be

checked indisputably (so that stakeholders or customers can decide whether or not a

requirement is fulfilled by the implemented system).

Adequacy and understandability are the most important quality criteria. Without them, a

requirement is useless or even detrimental, regardless of the fulfillment of all other criteria.

Verifiability is important when the system implemented must undergo a formal acceptance

procedure.

Some people use correctness instead of adequacy. However, the notion of correctness

implies that there is a formal procedure for deciding whether something is correct or not. As

there is no formal procedure for validating a documented requirement against the desires

and needs that stakeholders have in mind, we prefer the term adequacy over correctness.

For work products covering multiple requirements, we recommend applying the following

quality criteria:

▪ Consistent: no two requirements, recorded in a single work product or in different

work products, contradict each other.

▪ Non-redundant: each requirement is documented only once and does not overlap

with another requirement.

▪ Complete: the work product contains all relevant requirements (functional

requirements, quality requirements, and constraints) that are known at this point in

time and that are related to this work product.

▪ Modifiable: the work product is set up in such a way that it can be modified without

degrading its quality.

▪ Traceable: the requirements in the work product can be traced back to their origins,

forward to their implementation (in design, code, and test), and to other requirements

they depend on.

▪ Conformant: if there are mandatory structuring or formatting instructions, the work

product must conform to them.

3.9 Further Reading

Mavin et al. [MWHN2009] introduce and describe the EARS template. Robertson and

Robertson [RoRo2012] describe the Volere templates. Goetz and Rupp [GoRu2003],

[Rupp2014] discuss rules and pitfalls for writing requirements in natural language. Cockburn

[Cock2001] has written an entire book about how to write use cases. Lauesen [Laue2002]

discusses task descriptions and also provides some examples of real-world RE work

products.

The ISO/IEC/IEEE standard 29148 [ISO29148] provides many resources concerning RE work

products: phrase templates, quality criteria for requirements, and detailed descriptions of

the content of various RE work products, including a document template for every work

product. Cohn [Cohn2010] has a chapter on how to frame requirements in a product

backlog.

Foundation Level | Handbook | © IREB 77 | 158

Gregory [Greg2016] and Glinz [Glin2016] discuss the problem of how detailed requirements

should be specified and to what extent complete and unambiguous requirements

specifications are possible.

Numerous publications deal with using models to specify requirements. The UML

specification [OMG2017], as well as textbooks about UML, describe the models available in

UML. Hofer and Schwentner [HoSch2020] introduce domain modeling with domain

storytelling. [OMG2013] and [OMG2018] describe the modeling languages BPMN for

modeling business processes and SysML for modeling systems, respectively. The books by

Booch, Rumbaugh, and Jacobson [BoRJ2005], [JaSB2011], [RuJB2004] give more depth

and (practical) applications of UML. Furthermore, the following books and articles are

recommended for more thorough knowledge and patterns in modeling requirements:

[DaTW2012], [Davi1993], [Fowl1996], [GHJV1994]. [LiSS1994] and [Pohl2010] provide a

better understanding of the quality aspects of models.

Foundation Level | Handbook | © IREB 78 | 158

4 Practices for Requirements Elaboration

In the previous chapters, we learned about the nature of requirements as the representation

of the wishes and needs of people and organizations for something new (e.g., a system to be

developed or adapted), about the principles that underlie the production of the

requirements, and about ways to capture the requirements in documentation. We establish

requirements before we build or modify a (part of a) system to ensure that the system is

useful for—and accepted by—the people or the organization that requested it. These

requirements then serve as input for a development team that will build and implement the

system.

This is Requirements Engineering in a nutshell; it happens, explicitly or often implicitly,

whenever and wherever people try to develop something. In principle, the quality of the

requirements determines the quality of the output of the subsequent development. Without

proper requirements, it is unlikely that the resulting system will be useful. Therefore, it is

important to elaborate the requirements in a professional way. This necessitates an explicit

definition of the how to: the practices to be used for high-quality elaboration.

That is what this chapter is about: it gives an overview of the tasks, activities, and practices

that are relevant for anyone involved in Requirements Engineering. It starts with the search

for potential sources of requirements and it ends with the delivery of a single, consistent,

understandable, and agreed set of requirements that can serve as input for the efficient

development, maintenance, and operation of an effective system.

The first task in every Requirements Engineering effort will be identifying and analyzing

potential sources for requirements. This may seem like a simple and obvious task, but as we

will see in Section 4.1, there are quite a few aspects that need to be considered and analyzed.

Overlooking a source will inevitably lead to poor or even missing requirements and therefore

degrade the quality of the resulting system.

The next step is eliciting the requirements from these sources. It is like drawing water from a

well: you never know what is in the bucket until you have brought it to the surface. In

Requirements Engineering, this task is called elicitation; it is explained in Section 0. In

elicitation, we turn implicit desires, wishes, needs, demands, expectations, and whatever else

into explicit requirements that can be recognized and understood by all parties involved.

However, when you ask two people about their requirements for a certain system, you will

rarely get exactly the same answers. In a whole series of requirements elicited from different

sources, it is almost certain that some of them will be conflicting. As it is impossible to

implement conflicting requirements in one and the same system, conflict resolution will

always be an important task in Requirements Engineering, as described in Section 4.3.

Section 4.4 is devoted to the final task in Requirements Engineering: the validation of

requirements. The purpose of this step is to ensure that the quality of the set of requirements

elicited and the individual requirements within this set is good enough to enable subsequent

system development.

Foundation Level | Handbook | © IREB 79 | 158

From the above description of Requirements Engineering tasks, you could get the

impression that they are performed as a linear process with a strict sequence of steps.

However, this is certainly not the intention of this description and rarely the case in practice.

Figure 4.1 shows some process steps that are common in Requirements Engineering. They

might be performed in parallel, in loops, or sequentially—whatever is suitable in the given

situation.

The starting point is often a limited set of obvious sources. During elicitation from these

sources, new sources are identified, triggering additional elicitation tasks. When conflicts are

encountered, more detailed elicitation may be required to find a way out. In validation, it may

appear that a source has been overlooked, a requirement is faulty, or a conflict has remained

uncovered, resulting in a new series of source analysis, elicitation, and/or conflict resolution

and validation activities. Even during the subsequent system development, circumstances

may necessitate additional Requirements Engineering.

Figure 4.1 Requirements Engineering is not a linear process

In agile projects, iterative and incremental Requirements Engineering and system development

go hand in hand, with requirements being elaborated just before the development of a new

system increment. In such projects, you will often see that a project starts with a limited product

backlog of high-level requirements that are refined and detailed only when they are candidates

for the next iteration.

Foundation Level | Handbook | © IREB 80 | 158

4.1 Sources for Requirements

Requirements are not like candy bars, lying on the shelf for everyone to pick them as they

please. In the introduction to this chapter, we compared requirements with water to be

drawn from a well: it is quite an effort to bring them to the surface. Therefore, the first

problem that a Requirements Engineer will face is “Where are the wells?” As no requirement

comes without a source, one of the first activities in requirements elicitation is to identify the

potential sources. It is not enough to identify these sources only at the beginning of a project

or product development; this is a process that will be repeated over and over again.

Right from the start of requirements elaboration, the Requirements Engineer should be

engaged in identifying, analyzing, and involving all relevant requirements sources, as missing

a relevant source will inevitably lead to an incomplete understanding of relevant

requirements. And this will continue until the end: the identification of requirements sources

is a process that requires constant reconsideration.

Chapter 2, Principle 3 emphasizes the necessity for (explicit and implicit) shared

understanding between and among all parties involved: stakeholders, Requirements

Engineers, developers. Understanding the context of the system to be developed in a certain

application domain is a prerequisite to being able to identify the relevant requirements

sources. Domain knowledge, previous successful collaboration, common culture and values,

and mutual trust are enablers for shared understanding, while geographic distance,

outsourcing, or large teams with high turnover are obstacles.

In Chapter 2, Principle 4, we introduced the context as a concept that is essential for

understanding and specifying a system and its requirements. We defined the context as that

part of reality that lies between the system boundary and the context boundary. Entities in

this context will somehow influence the system or even interact with it but will not be

contained in the system itself.

This would make the search for requirements sources quite simple: just look around in the

context! But it is not that easy. At the start of a development process, the context has not

been defined yet; the system boundary and the context boundary still have to be

determined. Therefore, the search for requirements sources is an iterative, recursive

process.

Potential sources are analyzed for their relationship with the future system. If you find no

relationship when analyzing a potential source, this means that it is part of the irrelevant

environment and will not be analyzed for requirements. Potential sources that appear to be

part of the future system are of no interest to the Requirements Engineer either; they belong

to the developers. Only those entities for which analysis reveals an interaction with, an

interface to, or an influence on the future system, but that remain (relatively) unchanged

during the next development deserve attention as sources for requirements. In this analysis,

the system boundary and the context boundary are delineated, vague at first and becoming

sharper as more and more sources are identified. As the context thus becomes clearer, it

becomes easier to identify new sources, which in turn sharpen the boundaries further.

Foundation Level | Handbook | © IREB 81 | 158

The search for requirements sources usually starts with a few obvious sources, often

identified by the client at the start of a development effort. Initial elicitation from these

sources will uncover other potential sources, which are then analyzed to decide whether or

not they are relevant for the system. During this analysis, new potential sources may again

pop up. In fact, in every elicitation effort, the Requirements Engineer will remain keen on

detecting new sources. This may continue until the very end of the development effort.

However, we try to identify the major, most relevant sources early, because all other

Requirements Engineering activities depend on this early identification.

In Requirements Engineering, we discern three major categories of sources:

▪ Stakeholders

▪ Documents

▪ (Other) systems

These categories are discussed in more detail in the following sections.

4.1.1 Stakeholders

In Chapter 2, Principle 2, you learned about the stakeholder as a person or organization that

influences a system’s requirements or is impacted by that system.

The stakeholders of a system are the main sources for requirements. Even more than with

other sources, failure to include a relevant stakeholder will have a major negative impact on

the quality of the final set of requirements; discovering such stakeholders late (or missing

them altogether) may lead to expensive changes or, at the end, a useless system. To create

a system that fulfills the needs of all of its stakeholders, the systematic identification of

stakeholders should start at the beginning of any development effort and the results should

be managed throughout development. Stakeholders can be found in a broad area around

the system, ranging from direct and indirect users of the system, (business) managers, IT

staff such as developers and operators, to opponents and competitors, governmental and

regulatory institutions, and many others. The prime question for identifying a person or an

organization as a stakeholder is: “Does a relevant relationship exist between the

person/organization and the system?”

It helps to see stakeholders as human beings made of flesh and blood. If you identify an

organization as stakeholder, ask yourself questions such as the following: “Can I identify a

person who is responsible for this organization? Who can be seen as the prime contact of this

organization? Who represents this organization within our company?” For instance, if the

government is the stakeholder because a certain law is involved, look for someone who

represents the government as the source to be approached for requirements. In this case, it is

not very useful to identify the Prime Minister as this person; the head of the internal legal

department would be a better choice.

Foundation Level | Handbook | © IREB 82 | 158

Figure 4.2 Alexander's onion model

There is no standard technique for identifying stakeholders but Ian Alexander’s onion model

[Alex2005] can be a good start, see Figure 4.2. This model shows how a (software) system is

surrounded by several layers of higher-level socio-technical1 and social systems, each

having its own stakeholders. At the start of a requirements development effort, a few of

these stakeholders will be evident—for instance, end users or customers. They can be used

as a starting point in the search for other stakeholders. After identifying them as relevant

sources, the Requirements Engineer will analyze their relationships, both in inner and outer

surrounding systems. In this analysis, new stakeholders will be found, who in turn may have

other (and more) relationships to be analyzed. You could call this the snowball principle: the

more stakeholders you have found, the easier it becomes to find new ones. However, when

arriving at stakeholders in Alexander’s wider environment, any outer relationships will end up

in the irrelevant environment, which means that they will no longer reveal new sources.

Apart from stakeholders referring to other stakeholders, documents can often reveal new

stakeholders. Good examples are organizational charts, process descriptions, marketing

reports, and regulatory documents. For more information about documentation as a source

for requirements, see Section 4.1.2. Checklists of typical stakeholder groups and roles can be

a useful tool to avoid overlooking certain inconspicuous potential stakeholders. Also,

analyzing stakeholders of legacy or similar systems can help.

1 A socio-technical system is a system that considers requirements spanning hardware, software, personal, and community

aspects, while recognizing the interaction between society's complex infrastructures and human behavior.

Foundation Level | Handbook | © IREB 83 | 158

As a Requirements Engineer, you will collect a lot of data about your stakeholders and

maintain this data until your work is done. You must know who the stakeholders are, how you

can reach them, when and where they are available, what their expertise is, as well as their

relevance as a source, what their attitude towards the project is and their influence on it,

what their roles are in the company, in the project and in their relation to the system, etc.

Usually, this information is kept in a stakeholders list, and it must be kept up to date, as

during all steps, you will remain in contact with all stakeholders—some intensely and very

closely, others infrequently and superficially. See Table 4.1 below for a simplified example.

Table 4.1 Example of a stakeholders list

Name Dept Phone Avail-ability Role Influence Interest

Marlene Owner 482263 Mondays only Sponsor ++ o

Peter Sales 481225 Permanent Product owner ++ +

Eva Legal 481237 Not in June Consultant + -

Hassan Logistics 242651 Permanent User o ++

Mira Service desk 242424 After 4pm User - +

Natalia*)

481226 Permanent Customer ++ ++

* Persona, created, maintained and represented by customer panel team

Maintaining a good, open relationship with the stakeholders is key to getting relevant

information from them. This relies primarily on behavioral characteristics such as integrity,

honesty, and respect.

Open and frequent communication about your plans, your activities, and your results is

essential. You may have to turn stakeholders from initial opponents into collaborators. As a

Requirements Engineer, you must understand what the stakeholders expect from you. You

must also sell your work by showing them the benefits of your solution and by removing the

impediments that stakeholders experience or expect on their way to that solution.

Unfortunately, it is not uncommon that certain (mostly internal) stakeholders foresee or in

fact experience negative consequences from the changes that result from your project. In

such cases, it will be hard to get their cooperation, even though you will certainly need it.

Escalation to higher levels in the organization may then be the only way to proceed, even

though the resulting relationship will be far from optimal. Stakeholder relationship

management [Bour2009] is an effective way to counter problems with stakeholders.

This implies a continuous process of gaining and maintaining the support and commitment

of stakeholders by engaging the right stakeholders at the right time and understanding and

managing their expectations.

In order to engage stakeholders in the elicitation process, you must ensure that they know

what the project is about and what their role within the project is. You have to understand

Foundation Level | Handbook | © IREB 84 | 158

their needs and try to address these needs as far possible within your competencies in the

project. While stakeholders deserve to be treated with respect, you may ask the same from

the stakeholders, at least from those who are actively engaged in the project. This means

that they should have time for you when you need them. They should give you the

information that you ask for, as well as other information that they know to be relevant. Their

feedback on your work products should be given timely and they should refrain from gossip

about the project, etc.

Problems with stakeholders typically arise if the rights and obligations of the Requirements

Engineer and the stakeholders with respect to the proposed system or the current project

are not clear or if the respective needs are not sufficiently addressed. If problems are

encountered, a kind of stakeholder agreement or stakeholder contract can help to provide all

parties with the desired clarity. When this occurs within an organization, endorsement by

senior management may add to the success of such an approach.

4.1.1.1 A Special Stakeholder: The User

Every system that we develop will have some interaction with certain users; why else would

you develop it? Of course, when you are working on the requirements for an embedded

technical subsystem, hidden inside some kind of complicated machinery, users will only

interact with it indirectly through several layers of surrounding systems. In such cases, these

users will not be your most important sources of requirements. However, in many systems,

specific human beings will have a direct interface with the system: the (end-)users. Their

acceptance of the system is vital to the success of the project, so they are your prime

interest and will receive special attention during all Requirements Engineering.

There are two major categories of users:

▪ Internal users are directly related to the organization for which the system is being

developed, such as staff, management, subcontractors. They are mostly limited in

number, more or less known individually, and somehow involved in the project. It is

relatively easy to contact them and they can be reached, influenced, and motivated

through formal, existing channels.

▪ External users are outside the company, such as customers, business partners,

civilians. Their number may be (very) large, in many cases they are not known

individually, and they could be completely unaware of or indifferent to the project.

You cannot influence them through formal channels. To get in contact with them, you

may need to do special things to motivate them to participate, such as advertising,

promising some reward, or giving them free access to a beta version. Forming a user

panel or addressing the crowd (sometimes with payment) can be useful ways of

involving these users.

Be aware that in addition to these regular categories, it can also be relevant to pay attention

to misusers: people who intentionally try to interact with the system in a harmful way, such as

hackers or competitors. It is rarely possible to contact or to influence them, but you can try

to develop measures to discourage them, to keep them out, or to detect foreseeable

attempts of misuse.

Foundation Level | Handbook | © IREB 85 | 158

This categorization should not be considered very strictly. We can imagine projects in which

users outside the company are small in number and can be reached easily, so they can be

seen as internal. On the other hand, in big companies, the distance to the users can be so

large that they should be treated more or less as external.

If you have a good insight into your user base, you should make a distinction between user

roles. Separate roles will usually have different information needs, will use the system in their

own way, and may have distinct access rights to functions and data—for instance, users who

input data versus supervisors who check this input. In such cases, make sure that you include

representatives of all relevant roles in the elicitation.

Often, especially at the beginning of elicitation efforts, such insight will be missing. Then, it is

even more important to realize that there is no such thing as The User. The User is not an

amorphous mass of identical humans but rather a collection of individuals, each of them with

their own habits, wishes, and needs. When a system has thousands of users or more, of

course you will not be able to fine tune the requirements to their individual needs. On the

other hand, a one size fits all approach aiming for the average user might not work either.

In such cases, it helps to discern a number of user types or user groups that show certain,

often behavioral similarities within the group as distinct from other groups. In practice,

having some three to seven groups often works best. Then, as a Requirements Engineer, you

will treat every group as a distinct source for requirements. A good technique is the use of

personas [Hump2017]. Personas are fictitious individuals that describe typical user groups of

the system with similar needs, goals, behaviors, or attitudes.

4.1.1.2 Personas

There are two major approaches to creating personas:

▪ Data-driven

 In this approach, personas are developed with marketing techniques, such as

interviews, focus groups, and other ethnographic data collection techniques. Such

personas are called qualitative personas. If personas are developed through statistical

analysis of a large sample of your user base, they are called quantitative personas.

▪ Imagination

 As a cheaper and quicker alternative, personas may be developed by imagination—

for instance, in a brainstorming session with the project team. We call them ad hoc

personas or proto-personas. As a Requirements Engineer, you must be aware that ad

hoc personas are based on imagination and assumptions. These assumptions must

be checked and confirmed throughout the Requirements Engineering process.

Foundation Level | Handbook | © IREB 86 | 158

Figure 4.3 Persona example

Basically, persona descriptions contain information that is relevant in view of the

development of the system at hand. Usually, this information will be enriched with additional

data, such as name, address, hobbies, and a drawing or portrait picture.

This gives a human face to the abstract concept of persona. It may help you to understand

that your work as a Requirements Engineer not only relates to facts but also to emotions.

Figure 4.3 gives an example of a persona description.

If you use personas in your project, it may be useful to look for a few individuals that fit the

persona descriptions and treat them as representatives of each group. In that case, you have

real stakeholders with whom you can communicate. However, always remember that the group

that such a stakeholder represents is an artificial one that does not exist in the real world but

only in the context of the system or project.

4.1.2 Documents

Documents can be a major source for requirements too. As a Requirements Engineer, you

often have to do a lot of reading, especially at the beginning of a project. All kinds of

documents may be relevant: company-, domain- and project-related documents, product

and process descriptions, legal and regulatory documentation, etc. As with stakeholders,

you can make a distinction between internal and external documents. Internal documents

can be easy to get but may be confidential and cannot be shared without explicit consent.

Often, you will need to sign a non-disclosure agreement before you receive access to them.

External documents may be difficult to find but are usually public; if not, make sure that you

are allowed to access and use them.

Foundation Level | Handbook | © IREB 87 | 158

Documents can be a great way to find other sources. For instance, an internal process

description may mention certain roles as being involved in that process, which in turn can

lead you to new potential stakeholders. However, documents can also be direct sources for

requirements, especially those that are easily overlooked or not regularly mentioned by

stakeholders: constraints in standards, company guidelines, and other legal or regulatory

documents; detailed requirements in procedures and work instructions; bright new ideas in

marketing material from competitors. Studying documentation can help you to understand

the context of the system to be developed, even by reading emails between people who

took the initiative for the project. Reading about analogous solutions for problems and goals

in other companies and domains can spark your imagination and show a feasible direction

for your current project.

As a Requirements Engineer, you should be aware that a document is always related to some

people: the author(s), the (target) audience, a manager responsible for or an auditor

checking adherence to it, someone who pointed out its existence to you, etc. All those

people may have a role as a stakeholder; it is up to you to find out whether or not this is the

case. You should always check the validity and relevance of a document and you often need

stakeholders to confirm this to you. If you were to derive requirements from an invalid or

outdated document, the system developed from these requirements would probably fail.

Just like stakeholders, documents used as requirements sources must be managed. You can

use a document list, comparable to the stakeholder list discussed above. All documents

should be kept in some kind of common, indexed library with a unique identification to allow

them to be referenced. Dates and version numbers are important to guard against working

with outdated versions; you could check at regular intervals whether a newer version has

been published and whether this influences the requirements. You should preferably work

with final versions but in practice, you often have to deal with drafts, so you also have to

record the status of documents. Keep old versions in an archive, because they may be

important to understanding how a system and its requirements evolved. Setting up suitable

and accurate management of the documents involved right from the start of a project will

save you a lot of work later on, in Requirements Engineering, development, and deployment.

It is a good starting point for establishing backward traceability, as discussed in Section 6.6.

4.1.3 Other Systems

You can also consider other systems as sources for requirements of the system you are

interested in. Here, you can make a distinction between internal and external systems, just as

in documentation and with the same considerations about access and confidentiality.

Another distinction is that of similar systems versus interfacing systems.

Similar systems have certain functionalities in common with the system to be developed.

They may be predecessor or legacy systems, competitor systems, comparable systems

used in other organizations, etc. You often study them through their documentation but

sometimes you can observe them in action or try them out as if they were a kind of

prototype. You may be able to contact their users to learn more about the functionalities and

Foundation Level | Handbook | © IREB 88 | 158

solutions of such systems. Predecessor or legacy systems are often a good source for

identifying detailed (functional and quality) requirements and constraints.

However, be aware that (especially technical) constraints from the past may not be relevant

anymore and may no longer restrict your current solution space.

Sometimes, a new system and a legacy system will coexist during a certain period, leading to

additional requirements—for instance, with regard to data sharing. Competitor and

comparable systems may be studied for their solution characteristics and can be a good

source for identifying delighters (see Section 4.2.1).

Interfacing systems will have a direct relationship with the system for which you are

developing the requirements. They will exchange data with your system as a source and/or a

sink though some (synchronous or asynchronous, in real time or in batch) interface (see also

Section 3.4.2 on system interfaces in context modeling). The correct configuration, content,

and behavior of such an interface is often essential for ensuring that your system works, and

you will therefore have to understand the system in detail. You can study interfacing systems

through their documentation, but as every (technical) detail is important here, simulation or

testing may be necessary. With regard to older or legacy systems in particular, you cannot

trust their documentation to be up to date so you will need some proof. To understand an

interface, you will also have to understand the context, functionality, and behavior of the

interfacing system. It will be helpful if you can contact application managers, architects, or

designers of such systems, especially if the interfacing system itself has to be updated to

allow for the new interface. Also be aware that an interfacing system will itself have users; it

may be interesting to consider these users as stakeholders in Alexander’s wider environment

of your own system.

4.2 Elicitation of Requirements

If we continue the analogy of water being drawn from a well, we are now at the point that we

have found the well and we start pulling the rope to get the bucket full of the required water

(or in this case requirements) to the surface. That is what we call elicitation: the effort

expended by the Requirements Engineer to turn implicit desires, demands, wishes, needs,

expectations—which until now were hidden in their sources—into explicit, understandable,

recognizable, and verifiable requirements. Of course, we will have to use all wells to be

complete and pull the rope in the right way to make sure that we get all the water to the

surface. In Requirements Engineering terminology, we say that we should apply the right

elicitation techniques.

A common categorization of elicitation techniques is the distinction between:

▪ Gathering techniques

▪ Design and idea-generating techniques

From these categories, you can select a wide range of elicitation techniques, each with their

own characteristics. Figure 4.4 gives an overview of elicitation techniques in their categories

and subcategories.

Foundation Level | Handbook | © IREB 89 | 158

Figure 4.4 An overview of elicitation techniques

A critical key competence of the Requirements Engineer is the ability to choose the right

(mix of) techniques under the given circumstances. Picking the right ones may depend on

many factors, such as:

▪ Type of system

 A completely new innovative system will benefit more from design and idea-

generating techniques, while a replacement system in a safety-critical environment

may need questioning techniques and system archaeology.

▪ Software development life cycle model

 In a waterfall project, you may have planned for extensive techniques such as

apprenticing or analogies, while in an agile environment, brainstorming,

storyboarding, and prototyping may prevail.

▪ People involved

 For instance, field observation will probably not be appreciated in highly confidential

businesses; a comprehensive survey may be preferred over a high number of

individual interviews.

▪ Organizational setup

 A solid government organization needs a totally different approach to a young

startup; a dispersed, highly decentralized company needs a different approach to a

compact company with a single location.

The best results are usually achieved with a combination of different elicitation techniques.

For a systematic approach to selecting them, see [CaDJ2014].

Foundation Level | Handbook | © IREB 90 | 158

Elicitation techniques are—or at least, should be—able to detect all kinds of requirements. In

Requirements Engineering practice, however, explicit functional requirements are often

overrated, and the more implicit quality requirements and constraints get less attention.

This may result in a system that—with all functional requirements being fulfilled—does not

perform, has poor usability, does not comply with architectural guidelines, or fails to meet

certain other quality requirements or constraints, and consequently will not be accepted.

Stakeholders can be sources, but you will often find more information in documents. For the

elicitation of quality requirements, applying a checklist based on the ISO 25010 standard

[ISO25010] can help to detect and quantify them—for example, in preparing for an interview.

Constraints can be found by considering possible restrictions of the solution space—for

example, technical, architectural, legal, organizational, cultural, or environmental issues.

Relevant documentation can often be identified through staff members.

4.2.1 The Kano Model

One of the major circumstances to consider in selecting an elicitation technique is the nature

and the importance of a requirement that we are trying to uncover. To gain more insight into

the nature of certain requirements, the Kano model [Verd2014] comes in handy. This model,

shown in Figure 4.5, classifies features of a system into three categories:

▪ Delighters (synonyms: excitement factors, unconscious requirements)

 A delighter is a feature that customers are not aware of; that is why we call them

unconscious. The customers do not ask for the feature because they do not know

that it is possible in the system—for instance, a smartphone that can be turned into a

beamer. At first, when the feature is new on the market, most customers will have

their doubts about it, but when some early adopters have tried it out and start

spreading the word, more and more people want to have it. If a delighter is absent, no

one will complain; but when present, this can be a differentiating feature that attracts

lots of customers.

▪ Satisfiers (synonyms: performance factors, conscious requirements)

 A satisfier is something that the customers explicitly ask for (hence conscious

requirements). The more satisfiers you can put into your system, the higher the

satisfaction of the customers will be. An example could be the number of lenses and

video options in a modern smartphone. Because adding satisfying features usually

also means higher costs, you will often need a kind of cost/benefit analysis to decide

how many of them will be incorporated in the system.

▪ Dissatisfiers (synonyms: basic factors, subconscious requirements)

 A dissatisfier is also a feature that the customers do not ask for. Here, however, the

reason for not asking for it is that the feature is so obvious (subconscious) that the

customers cannot imagine it not being part of the system; these features are tacitly

considered as must-haves. Imagine a smartphone without GPS. If a dissatisfier is

included as a feature of a system, customers will not notice it because they think the

Foundation Level | Handbook | © IREB 91 | 158

system cannot exist without it. However, if you overlook such a requirement and leave

it out of the system, customers will be very upset and will refuse to use the system.

The Kano model looks at requirements from the perspective of the customer. It focuses on

differentiating features, as opposed to expressed needs. With the Kano model in mind, you

may find more requirements than when focusing only on the explicitly formulated needs

from the stakeholders. As we will see later in this chapter, all categories can be linked to

distinct elicitation techniques.

Figure 4.5 The Kano model

In fact, the original Kano model contains two more categories, the indifferent (or I don’t care)

and the reject (or I hate) requirements. These categories do not get much attention in most

Requirements Engineering handbooks but can still be useful for you as a Requirements

Engineer. Suppose, for instance, that developers want to add a certain feature to the system for

technical reasons. If, after analysis, you find that the customers are indifferent to this feature, it

is safe to include it in the system. However, if it turns out to be a reject requirement, you should

tell the developers to look for a less harmful alternative, as implementing this requirement can

turn out to be a costly mistake.

One interesting observation when working with the Kano model is that requirements tend to

change over time. If someone introduces a new feature, there is no certainty about how the

market will react to that feature. Sometimes, customers will be indifferent to it, and the

feature will survive only if it does not increase the price of the product.

Foundation Level | Handbook | © IREB 92 | 158

If customers reject it, the feature will probably be removed from the product as soon as

possible. However, when (maybe initially a vanguard of) the customers like the feature, it will

become a delighter, a unique selling point for which the customers are prepared to pay the

price. As more and more customers discover, experience, and like this new feature, it will

become a satisfier that is explicitly asked for. Gradually, when similar systems start to

implement the same feature, customers may forget that systems did not originally include

such a feature and will take it for granted, turning it into a dissatisfier. That is why many

systems contain features that the users consider as indispensable without knowing why and

thus without explicitly asking for them.

A good example is the camera function on cell phones, for which this process took less than 20

years. The first time a camera was introduced as part of a cell phone, most customers were

puzzled: no one had asked for this feature and most customers thought “If I want to take a

picture, I need a camera.” However, some early adopters tried it out and discovered the

convenience of taking pictures without a dedicated camera and being able to share them

instantly with other people without making a print. They liked the camera feature as a delighter

and all brands started to implement it in their phones, turning it into a satisfier: the better the

pictures were, the more satisfied the user was. Nowadays, when buying a new cell phone,

everybody takes for granted that it will have a camera function so it has become a dissatisfier:

“If I can’t take a picture with this cell phone, it is useless.”

How can you categorize a specific feature? You use the technique of Kano analysis. For a

specific feature, you ask two questions to a representative group of potential users: (1) “What

would you feel if this feature were present in the system?” and (2) “What would you feel if this

feature were absent from the system?” You let them score the answers on a 5-point scale

between “I love it” and “I hate it” and then plot the average answer on the Kano analysis

matrix as shown in Figure 4.5. The cell that comes up gives you the Kano classification for

the feature.

Figure 4.6 Kano analysis matrix

Foundation Level | Handbook | © IREB 93 | 158

The next question is: why bother with Kano analysis in requirements elicitation?

As we explain in the following sections, you will need different techniques to find these

different categories of features. By themselves, stakeholders will mainly talk about their

satisfiers—their conscious requirements that they explicitly ask for. It is much more difficult

to detect the other categories but fortunately, there are several useful techniques for doing

so.

4.2.2 Gathering Techniques

With gathering techniques, you examine the different sources that you have identified and

elicit the requirements from there. These established techniques have been commonly used

throughout Requirements Engineering and predominantly yield satisfiers and dissatisfiers.

Gathering techniques can be further subdivided into four categories:

▪ Questioning techniques

▪ Collaboration techniques

▪ Observation techniques

▪ Artifact-based techniques

Questioning techniques are always used in an interaction with stakeholders. The

Requirements Engineer poses appropriate questions to the stakeholders in order to let the

stakeholder do the thinking and to receive answers from which requirements can be derived.

Examples of questioning techniques are:

▪ Interviews

 Due to their flexibility, interviews are probably one of the most frequently used

elicitation techniques. They do not require specific tools and can be used to elicit

high-level requirements as well as very specific ones. Usually, an interview is a one-

to-one session between a Requirements Engineer (interviewer) and an individual

stakeholder (interviewee), but a small group of interviewees is also an option.

Typically, requirements elicited with an interview are satisfiers, as the interviewee

voices conscious information. The interview technique is not overly complicated and

most people have a good understanding of what it is. However, you need clear goals

and good preparation to obtain useful results. Interviews can reveal detailed

information and offer flexibility based on the answers given. They are rather time-

consuming, so this technique is less appropriate when you want to reach large

numbers of stakeholders.

▪ Questionnaires

 With a questionnaire, a larger group of stakeholders is asked to answer—orally, in

writing, or on a web page—the same set of questions, which are presented in a

structured way. Quantitative questionnaires are used to confirm hypotheses or

previously elicited requirements. They use closed-ended questions (only predefined

answers allowed) and can therefore be evaluated quickly and deliver statistical

Foundation Level | Handbook | © IREB 94 | 158

information. On the other hand, qualitative questionnaires use open-ended questions

and can find new requirements. They tend to deliver complex results and are thus

usually more time-consuming to prepare and to evaluate. In general, questionnaires

are a preferred technique for large groups. Be aware, however, that designing a good

questionnaire involves quite a lot of effort. A questionnaire is often the next step after

obtaining a preliminary idea based on a series of interviews in order to validate these

ideas within a larger group.

In the category of collaboration techniques, we find all kinds of collaboration between the

Requirements Engineer and other people (stakeholders, experts, users, customers, etc.).

Some examples are:

▪ Workshops

 Workshop is an umbrella term for group-oriented techniques, ranging from small

informal meetings to organized events with several dozen or even hundreds of

stakeholders. A nice definition is as follows: "A requirements workshop is a structured

meeting in which a carefully selected group of stakeholders and content experts work

together to define, create, refine, and reach a closure on deliverables (such as models

and documents) that represent user requirements" [Gott2002]. With a workshop, you

can get a good global insight in a short time because you use the interaction between

the participants. If you need more detail, follow-up interviews or questionnaires are

appropriate. Workshops can serve as a gathering technique but they can also be used

in creativity techniques (see Section 4.2.3).

▪ Crowd-based Requirements Engineering

 In crowd-based (also known as platform-based) Requirements Engineering (see

[GreA2017]), elicitation is turned into a participatory effort with a crowd of

stakeholders, in particular the users, leading to more accurate requirements and

ultimately better software. The power of the crowd lies in the diversity of talents and

expertise available within the crowd. As the amount of data obtained from the crowd

will be large, an automated platform for processing this data is essential. This

platform should offer community-oriented features that support collaboration and

knowledge sharing and foster the engagement of larger groups of stakeholders in the

collection, analysis, and development of software requirements, as well as validation

and prioritization of these requirements in a dynamic, user-driven way.

Observation techniques are also applied in relation to stakeholders. The stakeholders are

observed while they are engaged in their normal (business) processes in their usual context

without direct interference from the Requirements Engineer. Observation techniques are

particularly useful for identifying dissatisfiers. You may observe peculiar activities,

sequences, data, etc. that are so common to the stakeholders that they do not mention

them, and these aspects thus do not easily come to light in gathering techniques.

Foundation Level | Handbook | © IREB 95 | 158

Common forms of observation techniques are:

▪ Field observation

 During field observation, the Requirements Engineer watches (mostly) end users in

their environment while these users perform the activities for which a system is to be

developed. Field observation is typically used in situations where interaction would

distract the users or would interfere with the process itself and potentially falsify

results. It can even be applied without informing the subjects observed, e.g. by sitting

with other patients in a dentist’s waiting room to observe their behavior. With field

observation, you will be able to detect (often detailed) requirements that would not

easily be found with other techniques—for instance, because actions and behaviors

are too complicated to put into words.

 Be aware that field observation requires a lot of preparation, a sharp eye, and lots of

time. Video is quite helpful for capturing stakeholder behavior. It can be used in

conjunction with direct field observation and may even replace it in situations where

the actual presence of the Requirements Engineer is not allowed or desired. Video

offers the possibility of postprocessing to allow for detailed investigation of acts and

proceedings that are difficult to observe.

▪ Apprenticing

 Apprenticing differs from field observation in that it is participatory. In apprenticing,

the Requirements Engineer (apprentice) does a kind of internship in the environment

in which the system at hand will be used (or is already in use) and experienced users

(masters) teach the apprentice how things work. The apprentice participates but does

not interfere; they act like a novice in the field and are allowed to make mistakes and

ask “dumb” questions. The aim is to create a deep understanding of the domain, the

business, and the processes before the actual elicitation of the requirements starts. A

follow-up with interviews and questionnaires will often be required to verify the initial

ideas. The resulting requirements can subsequently be documented and validated. An

optimal duration for such an internship depends on many different factors (e.g.,

complexity of the process, repetitiveness, time availability of master and apprentice)

but usually varies between one day and several weeks. Be aware that apprenticing

may be difficult or impossible to organize in certain domains, such as medicine,

aviation, or the military.

Artifact-based techniques do not use stakeholders (directly) but rather work products such

as documents and systems, or even images, audio and video files, as sources for

requirements. These techniques can find (sometimes very detailed) satisfiers and

dissatisfiers. It is usually a time-consuming task to examine (often poorly structured,

outdated, or partly irrelevant) work products in detail. Nonetheless, artifact-based

techniques can be useful, particularly when stakeholders are not readily available.

Foundation Level | Handbook | © IREB 96 | 158

A few examples of artifact-based techniques are:

▪ System archaeology

 In system archaeology, requirements are extracted from existing systems—such as

legacy systems, competitor systems, or even analogous systems—by analyzing their

documentation (designs, manuals) or implementation (code, comments, scripts, user

stories, test cases). This technique is mainly used if an existing system has been used

for many years and is now to be replaced by a new system for whatever reason; the

new system has to cover the same functionality as the old one, or at least certain

parts of it. System archaeology often takes a lot of time but may reveal detailed

requirements and constraints that are not easily detected otherwise. However, you

will need extra time to check, through other channels, whether or not these

requirements are still valid and relevant.

▪ Feedback analysis

 There are many ways to collect feedback from (potential) users and customers, be it

on an existing system or on a prototype. Feedback data may be structured (e.g., a 5-

star rating in an app store) or unstructured (like review comments). It may be

gathered via web surveys and contact forms, during beta or A/B testing, on social

media, or even as customer remarks received in a call center. Often, the amount of

data is quite large, and analysis will be time-consuming. However, the feedback can

be very useful for gaining insight into the user’s pains and gains. Negative scores and

critical remarks will help you to detect unnoticed dissatisfiers. Positive scores and

compliments will give you additional information about satisfiers. Occasionally,

comments may even contain innovative ideas that can be turned into delighters.

Feedback analysis can thus result in adjustment of existing requirements but also to

the discovery of new ones.

▪ Reuse of requirements

 Many organizations already have a large collection of requirements that have been

elicited and elaborated in the past for previous systems. Many of these requirements

may be applicable for a new system too, especially requirements that have been

derived from an overarching domain model. Therefore, reuse of existing requirements

can save lots of time and money because you can skip their elicitation. However, this

works only if this collection of existing requirements is up to date, managed

effectively, easily available, and documented extensively, which unfortunately is not

often the case. Even if reuse is feasible, be aware that you still need to validate with

the stakeholders whether these reusable requirements are relevant and valid in the

new situation, be it directly or with some adjustments.

4.2.3 Design and Idea-Generating Techniques

In the past, Requirements Engineering has focused on gathering and documenting the

necessary requirements from all relevant stakeholders by applying gathering techniques as

introduced in the previous section. The growing influence of software as an innovation driver

Foundation Level | Handbook | © IREB 97 | 158

in many businesses is now increasingly demanding a new positioning of Requirements

Engineering as a creative, problem-solving activity. This involves the application of other

techniques that no longer consider stakeholders (and their documents and systems) the one

and only source of requirements. Innovative systems need new, maybe disruptive features

that the current stakeholders cannot imagine (yet).

Design and idea-generating techniques have emerged to fulfill this need. These techniques

are intended to stimulate creativity, mostly within teams, for the generation of ideas and

may provide additional ways to elaborate a given idea. These techniques may yield new and

innovative requirements that are often delighters. Many diverse techniques exist within this

broad category, some remarkably simple, others quite elaborate. We will look at a few

examples from two subcategories:

▪ Creativity techniques

▪ Design techniques

In addition, we will look at the emerging field of design thinking.

Creativity techniques stimulate creativity in order to find or to create new requirements that

cannot be gathered directly from the stakeholders because the stakeholders are not aware

of the feasibility of certain new features or (technical) innovations. These techniques are

usually applied within diverse, multi-disciplinary teams of IT staff such as analysts,

Requirements Engineers, developers, testers, product owners, application managers, etc.,

with or without business representatives, users, clients, and other stakeholders. The

techniques stimulate out-of-the-box and borderless thinking and elaboration of each

other’s ideas. Unfortunately, none of them guarantee success in generating creative results

as several mechanisms in our brain have to come together to enable creative ideas.

An obvious example where creativity techniques are important is the games industry. You can

of course ask gamers for their requirements with a gathering technique and you will learn what

gamers like or dislike about the current games. However, to develop a successful game, you

need to surprise the gamers with something new; you have to discover their delighters. That is

exactly where creativity techniques fit in.

Several preconditions have been identified as important factors for creativity to emerge:

▪ Chance—and therefore time—for an idea to come up

▪ Knowledge of the subject matter, which raises the odds for an idea that makes the

difference

▪ Motivation, as our brain can only be creative if there is a direct benefit for its owner

▪ Safety and security, as useless ideas must not have negative consequences

Two examples of creativity techniques are presented here:

▪ Brainstorming

 Brainstorming (see [Osbo1948]) supports the development of new ideas for a given

question or problem. As with most creativity techniques, the crucial point of

Foundation Level | Handbook | © IREB 98 | 158

brainstorming is to defer judgment by separating the finding of ideas from the

analysis of ideas. Some general guidelines for brainstorming include:

 Quantity prevails over quality.

 Free association and visionary thinking are explicitly desired.

 Taking on and combining expressed ideas is allowed and desired.

 Criticizing other participants’ ideas is forbidden even if an idea seems to be absurd.

 After a brainstorming session, the ideas that have emerged are categorized,

assessed, and prioritized. Selected ideas then serve as input for further elicitation.

▪ Analogy technique

 The analogy technique (see [Robe2001]) helps with the development of ideas for

critical and complex topics. It uses analogies to support thinking and the generation

of ideas. Its success or failure is influenced mainly by the selection of a proper

analogy for the given problem. The selected analogy can be close to (e.g., the same

problem in another business) or distant from (e.g., comparing an organization with a

living organism) the original problem. The application of the analogy technique

consists of two steps:

 Elaborate the aspects of the selected analogy in detail without referring to the original

problem.

 Transfer all identified aspects of the analogy back to the original problem.

 The resulting concepts and ideas will then be a starting point for additional elicitation.

Design techniques help explore and elaborate ideas generated with creativity techniques and

also help clarify and concretize vague stakeholder needs. They heavily rely on visual or

tangible artifacts, team cooperation and customer feedback.

Popular techniques in this category include:

▪ Prototyping

 By prototype (in relation to elicitation; see also Section 0 for more information), we

mean a kind of intermediate work product that is created or released to generate

feedback. Prototypes can range from simple paper sketches to working pre-release

versions of a system. They allow future users to experiment with the system in a more

or less tangible way and to investigate certain, as yet unclear, characteristics during

Requirements Engineering and before the actual implementation. As we will see in the

section on validation (4.4.2), prototypes are primarily used for checking that

previously defined requirements have been implemented correctly. However, with

proper guidance of the users and analysis of their feedback, this technique can also

be used to derive new requirements. It may be particularly useful for detecting non-

functional requirements, dissatisfiers and constraints, or whatever other

characteristics that cannot easily be understood or defined up front in models and

documentation.

▪ Scenarios and storyboards

 The word scenario stems from the theater, where it is used to refer to an outline of a

play, opera, or similar, indicating a sequence of scenes with their characters. In IT, we

Foundation Level | Handbook | © IREB 99 | 158

use this term to describe a flow of actions for a system, including the users involved

(who we usually call actors here). Through scenarios, you can explore alternative ways

of realizing a process in a system. Because of their lightweight structure, they are

easy to develop and can be changed rapidly. In the same way as for prototypes,

scenarios and storyboards can be applied in both (early) elicitation and (later)

validation of requirements.

 Scenarios can be documented in a written or a visual form. The visual form of a

scenario is called a storyboard.

 A storyboard is typically a kind of comic strip with a series of panels that show the

interaction of certain personas with the system. See Figure 4.7 for an example.

Scenarios and storyboards are useful for early elaboration of ideas in terms of

processes and activities.

Figure 4.7 Example of a storyboard

Design thinking is not so much a technique but rather a concept, an attitude, a philosophy, a

family of processes, and often a toolbox full of techniques. The focus is on innovation and

problem solving. Several variants of design thinking exist, mostly using lightweight, visual,

and agile techniques. Two basic principles can be found in all variants:

▪ Empathy

 The first step for design thinkers is to find the real problem behind the given problem.

They try to understand what stakeholders really think, feel, and do when they interact

with a system. Therefore, we often refer to design thinking as human-centered

Foundation Level | Handbook | © IREB 100 | 158

design. Personas, empathy mapping, and customer co-creation are common

techniques to this end.

▪ Creativity

 A common characteristic of design thinking is the diamond: the alternation of

divergent and convergent thinking. Divergent thinking aims at exploring an issue more

widely and deeply, generating lots of different ideas, and convergent thinking

focuses, selects, prunes, combines these ideas into a single final delivery. A basic

pattern, the double diamond model, is shown in Figure 4.8 (see [DeCo2007]).

A detailed treatment of design thinking is beyond the scope of this Foundation Level

Handbook.

Figure 4.8 The double diamond

4.3 Resolving Conflicts regarding Requirements

During elicitation, you gather a broad collection of requirements from different sources, with

different techniques, and at different levels of abstraction and detail. The elicitation

techniques that you use do not guarantee by themselves that this collection as a whole

forms a single, consistent, agreed upon set of requirements that captures the essence of the

system. Both during and after elicitation of a set of requirements for a certain system, you

may find out that some of the requirements are conflicting: they may be inconsistent,

incompatible, contradictory. It might be that requirements conflict with each other (e.g., “all

text must be black on white” versus “all error messages must be red”) or that some

stakeholders have a different opinion about the same requirement (e.g., “all error messages

must be red” versus “user error messages must be red, all other error messages blue”). As we

cannot develop a (specific part of a) system based on conflicting requirements, the conflicts

must be resolved before development can start. As a Requirements Engineer, you are the

Foundation Level | Handbook | © IREB 101 | 158

one who should make sure that all stakeholders arrive at a shared understanding (see

Chapter 2, Principle 3) of the complete set of requirements as far as they are relevant to

them and that they agree on this set.

But what is a conflict? A conflict is a certain disagreement between people: “An interaction

between agents (individuals, groups, organizations, etc.), where at least one agent perceives

incompatibilities between her thinking/ideas/perceptions and/or feelings and/or will and that

of the other agent (or agents), and feels restricted by the other’s action” [Glas1999]. In a

requirements conflict, two or more stakeholders have a different or even contradictory

opinion regarding a certain requirement or their requirements cannot be implemented in a

certain system at the same time; see Figure 4.9.

Figure 4.9 A requirements conflict

Dealing with requirements conflicts can be difficult, painful, and time-consuming, especially

when personal issues are involved. However, denying or ignoring conflicts is not an option, so

the Requirements Engineer must actively search for ways to resolve them. At the end, all

stakeholders must understand and agree upon all requirements that are relevant to them. If

some stakeholders do not agree, this situation must be recognized as a conflict that must be

resolved accordingly.

4.3.1 How Do You Resolve a Requirements Conflict?

To resolve a requirements conflict properly, the following steps should be followed:

▪ Conflict identification

 We often have conflicts in our everyday life. They give us an unpleasant feeling, so a

common strategy is simply to avoid, ignore, or deny them. That may make conflicts

hard to find. Most of them tend to be hidden and can only be detected by careful

observation. There are many indicators that you can pay attention to, both in

communication and in documentation:

Foundation Level | Handbook | © IREB 102 | 158

 In communication, you may observe behavior such as denial, indifference, pedantry,

continuously asking for more details, deliberately incorrect interpretations,

concealment, or delegation.

 In documentation, you may find things such as contradictory statements by

stakeholders, conflicting results from analysis of documents or systems,

inconsistencies across different levels of detail, and inconsistent use of terms.

 If you observe such indicators, this does not necessarily mean that there is a

requirements conflict, but you should certainly be suspicious. Thorough discussion

with the stakeholders can then bring a hidden conflict to the surface.

▪ Conflict analysis

 Once a conflict has been identified, the Requirements Engineer has to first clarify

whether this conflict is a requirements conflict or not. After all, a requirements

conflict is the primary responsibility of the Requirements Engineer; other conflicts can

be resolved by other participants, such as a department manager or a team lead. The

Requirements Engineer should fully understand the nature of the requirements

conflict before attempting to resolve it. This means that you will have to collect more

information about the conflict itself and the stakeholders involved.

 Many aspects deserve attention:

▪ Subject matter: the scope, the problem, or the real issue behind the conflict.

▪ Affected requirements: which specific requirements are affected?

▪ Stakeholders involved: who disagrees with whom about what?

▪ Opinions of the stakeholders: let them make their point as clearly as possible so

that all conflicting parties understand the underlying issue.

▪ The cause of the conflict: what is the reason behind the difference in opinions?

▪ The history of the conflict: what has happened before that influences these

opinions now?

▪ Consequences: the estimated costs and risks associated both with resolving the

conflict or not resolving it.

▪ Project constraints: personal, organizational, content-specific, or domain-specific

constraints may determine the solution space.

▪ Analyzing this information will help you to recognize the type of conflict (for more

information, see Section 4.3.2) and will indicate ways to resolve it.

▪ Conflict resolution

 Once an in-depth understanding of the nature of the requirements conflict, the

attitude of the stakeholders involved, and the project constraints has been reached,

the Requirements Engineer will select a suitable resolution technique. Many

techniques can be used, as explained in Section 4.3.3. The first step should always be

to get the chosen technique accepted by the stakeholders involved before applying

it. If some stakeholders do not agree up front with the application of a certain

technique, they certainly will not accept the outcome of it, so at the end, the conflict

will not be resolved. In principle, the Requirements Engineer is not one of the

stakeholders involved, so you can and should apply the selected resolution

Foundation Level | Handbook | © IREB 103 | 158

techniques in an objective, strictly neutral way, and welcome any outcome that

results from applying the technique.

▪ Documentation of conflict resolution. Conflict resolution may influence the

requirements in a way that is not obvious for someone who was not involved in the

conflict. The resulting set of requirements may seem illogical or inefficient. Therefore,

the conflict resolution should be properly documented and communicated with

regard to aspects such as the following:

▪ Assumptions concerning the conflict and its resolution

▪ Potential alternatives considered

▪ Constraints influencing the chosen technique and/or resolution

▪ The way the conflict was resolved, including reasons for the chosen resolution

▪ Decision-makers and other contributors

▪ If you do not document the resolution, after a while, stakeholders may simply

forget or ignore the decisions that have been taken. And later in the project,

developers may not understand the rationale behind a particular system design

and may implement it in a different way.

You do not need to be afraid of requirements conflicts, as they will always occur. This should not

be a surprise to you; in fact, you should be troubled if you do not detect any conflicts. They are

quite common, so if you do not find them, you have probably missed some. But never ignore

them. If you do not resolve all requirements conflicts that you notice right away, they will pop up

later in the development process. And as Barry Boehm [Boeh1981] already found out a long time

ago, the later you discover a problem, the more expensive it will be to solve it.

4.3.2 Conflict Types

To achieve a better understanding of the nature of a conflict, it is useful to distinguish

between different conflict types. This helps in selecting proper resolution techniques.

We discern six types of conflict:

▪ Subject matter conflict

 A subject matter conflict occurs when the conflicting parties really have different

factual needs, mostly caused by the intended use of the system in different

environments. A good example is a system that is to be used in different countries,

each with their own legislation. It may be difficult to resolve such a conflict because

the underlying facts cannot be changed. The first thing to do then is to analyze and

document these facts in detail and to have the conflicting parties agree on the exact

nature of the conflict.

▪ Data conflict

 A data conflict is present when some parties refer to inconsistent data from different

sources or interpret the same data in a different way. This may be due to poor

communication, missing background data, cultural differences, existing prejudices,

Foundation Level | Handbook | © IREB 104 | 158

etc. Estimates in particular, such as future sales, can easily generate a data conflict

as they are often based on assumptions. Detecting a data conflict is not easy,

because as a Requirements Engineer, you may think that your own sources are right

and your own interpretation is self-evident. Due to this bias, you often suspect

another conflict type at first.

 Understanding how people can come to a different interpretation requires a lot of

empathy. Communication—over and over again—is key for both detecting and

resolving this type of conflict.

▪ Interest conflict

 An interest conflict is based on different positions of the conflicting parties, formed

by personal goals, goals related to a group, or goals related to a role. You should

understand the concerns and needs of the stakeholders involved before you can

resolve this type of conflict. However, keep in mind that in the case of personal

interests, stakeholders often do not reveal their true motives and they put forward

seemingly factual but essentially artificial arguments. If a discussion is about an

interest conflict, you can observe the conflict parties trying to convince each other to

follow their arguments and understand the needs of the role or group. Resolution may

benefit from identifying and strengthening shared interests. Working on a mutual

understanding about the gains and pains of both parties can be a starting point for

finding a solution.

▪ Value conflict

 A value conflict is based on differences in values and principles of the stakeholders

involved. Compared to an interest conflict, a value conflict is more individual and

related to global and long-term perspectives. Values are more stable than interests

and rarely change in the short term. If a value conflict is the reason for a discussion,

the conflict parties will emphasize why their arguments are important from their point

of view, revealing their inner values and principles. They tend to insist on their

arguments and are unwilling to give up. To resolve such conflicts, look for higher

values that unite the parties. Value conflicts are notoriously difficult to resolve and

achieving mutual understanding and recognition of each other's principles is the best

you can get.

▪ Relationship conflict

 A relationship conflict is usually based on negative experiences with another party in

the past, or in comparable situations with similar people. Often, emotions and

miscommunication are involved, which makes the conflict a lot more difficult to solve.

Conflict parties misuse discussions on requirements to express their anger with the

behavior of each other, forgetting about facts, figures, and fairness. Bringing the

discussion back to requirements will rarely help; sometimes, uniting parties around a

higher value is successful. In most cases, you will have to escalate the issue to other

stakeholders or a higher level of authority; exchanging people is a potential resolution.

Be aware that a relationship conflict often co-occurs with other conflict types—for

Foundation Level | Handbook | © IREB 105 | 158

instance, an interest conflict. Analyzing the root cause and solving the other conflict

type may then be the best way to improve the relationship.

▪ Structural conflict

 We call a conflict structural when it involves inequality of power, competition over

limited resources, or structural dependencies between parties. The resulting

imbalance (often perceived by only one of the parties) causes problems in

communication and decision making. Another reason for such conflicts may be

restrictions on resources or dependencies on work products to be delivered by

another party. Parties may use the discussion on requirements to either change or

preserve the status quo. Hierarchy may be misused to push through decisions. For

structural conflicts too, escalating the issue to other stakeholders or a higher level of

authority is often necessary.

Most requirements conflicts can be categorized as either a subject matter, data, interest, or

value conflict. Relationship and structural conflicts are often not directly related to

requirements and therefore the Requirements Engineer may not be the appropriate party to

resolve them. However, in reality, most conflicts fall into more than one category as different

causes interact. Therefore, it is advisable to pay attention to all kinds of conflicts, even if the

solution is not within your own responsibility. If someone else should resolve the conflict,

make sure that it happens; as long as a conflict is not resolved, it will continue to have a

negative impact on your work as a Requirements Engineer.

4.3.3 Conflict Resolution Techniques

Depending on the type and the context (stakeholders, constraints, etc.) of a conflict, a

proper resolution technique is selected. Commonly used techniques include [PoRu2015]:

Agreement

An agreement results from a discussion between the stakeholders involved, to be continued

until they completely understand each other’s positions and agree to a certain option

preferred by all parties. It can be very time-consuming, especially when multiple parties are

involved. If successful, it will provide additional motivation to the stakeholders, so the result

has a good chance of being long lasting. Striving to reach an agreement is common in data

conflicts. If this technique is unsuccessful within an acceptable timeframe, other techniques

can be used thereafter.

Foundation Level | Handbook | © IREB 106 | 158

Figure 4.10 Agreement

Compromise

A compromise is quite similar to an agreement. Here, however, stakeholders agree on an

option that is not their preference but that they can live with because accepting the

compromise is considered better than continuing the conflict. Therefore, a compromise can

also be long lasting. The compromise may contain new elements that were not present in the

original preferences of the stakeholders and that may have been introduced by the

Requirements Engineer. A good compromise is an alternative in which all parties feel

comfortable with the balance of giving up things and getting something else in return. A

compromise is often next in line if an agreement cannot be reached in time. It is suitable for

subject matter conflicts and may also work for interest and structural conflicts.

Figure 4.11 Compromise

Foundation Level | Handbook | © IREB 107 | 158

Voting

Voting works best when a relatively simple choice has to be made between a clear set of

conflicting requirements. Stakeholders that participate in the voting (usually not only the

conflicting parties but all stakeholders involved) should fully understand the alternatives and

the consequences of their vote. In order to avoid influences from dependencies or an

imbalance of power, voting is best done anonymously and with a neutral moderator. The

voting procedure itself should be agreed upon between the stakeholders before the actual

voting. Voting is a quick and easy means for conflict resolution but the party that loses the

vote will be disappointed and may need attention. Voting can work for most conflict types

and may be a good way to solve subject matter and interest conflicts.

Figure 4.12 Voting

Overruling

If an agreement or a compromise cannot be reached and at least one of the conflicting

parties refuses to participate in voting, overruling may be an option. It is often applied under

pressure, when there is not enough time to use more convenient techniques. Usually,

overruling is done by transferring the choice between conflicting requirements to a decision

maker who is higher in authority or hierarchy than all conflicting parties and has enough

power to have the decision be implemented. Therefore, it is a good way to solve interest and

structural conflicts. In this situation, it is particularly important that the decision maker fully

understands the alternatives, the position of the conflicting parties, and the consequences

of the decision. A variant of overruling is to outsource the decision to a third party—for

instance, an external expert. In that case, it is important to first get an agreement between

the stakeholders on the decision maker. As with voting, you may need to pay attention to the

loser.

Definition of variants

Definition of variants is often considered for subject matter, interest, and value conflicts. We

have seen that we cannot implement conflicting requirements in one and the same system.

Foundation Level | Handbook | © IREB 108 | 158

Definition of variants means that we build separate solutions for all conflicting requirements.

This is usually implemented by developing a system that can be configured through

parameters to exhibit the desired features. This may seem like a perfect solution but it

comes at a price: it takes a lot of time to define the solution and a growing complexity (as

well as additional costs) is introduced into the system, both for development and during

operations and maintenance. This technique is therefore feasible only if enough time and

budget are available.

Figure 4.13 Definition of variants

Auxiliary techniques

In addition, there are several auxiliary techniques that are not usually used on their own but

rather to assist the above-mentioned techniques.

In Consider-All-Facts (CAF), you consider alternative solutions for a number of predefined

criteria—for example, cost, time, risk, available resources. Weighing these criteria can

provide more clarity about the pros and cons of the alternatives and help to identify the best

alternative.

Plus-Minus-Interesting (PMI, see [DeBo2005]) is a brainstorming and decision-making tool. It

encourages the examination of ideas and concepts from more than one perspective and is

therefore valuable for conflict resolution. In PMI, the participants (usually all stakeholders

involved) first identify all positive aspects (plus) of the alternatives, then the negatives

(minus), and finally the interesting points, things that need further investigation. The

alternative with the most pluses and the fewest minuses is the preferred alternative.

In fact, both CAF and PMI are variants of the decision matrix, a methodical approach for

conflict resolution. The conflicting requirements are assessed based on a (larger) number of

criteria, after which, scores on these aspects are used to calculate a (weighted) final score

for the alternatives. The highest score then wins, like Alternative 1 in the example of

Tabelle 4.1 below. In fact, prioritization (see Section 6.8) is then used as a resolution

technique. As stated earlier, these techniques are usually seen as auxiliary: they create more

Foundation Level | Handbook | © IREB 109 | 158

insight into the alternatives and thus help with the chosen resolution technique. They can

even be used as a single technique if all stakeholders involved agree to accept the outcome.

Tabelle 4.1: Example of a decision matrix

 Alternative 1: iOS only Alternative 2: Android & iOS

Criterion Weight Score Weighted Score Weighted

Cust. base 2 3 6 4 8

Dev. cost 1 3 3 2 2

T.t. market 3 4 12 2 6

Reputation 2 2 4 4 8

User exp. 1 5 5 3 3

Total 30 27

4.4 Validation of Requirements

In Chapter 2, Principle 6, we emphasized the importance of validating the requirements to

avoid unsatisfied stakeholders. Because the requirements form the input for subsequent

system development, we must ensure their quality up front to reduce wasted effort

downstream, both at the level of the individual requirements and of the work products

containing them (Figure 4.14).

We should validate the coverage of stakeholders' needs by our documentation, the degree

of agreement among all stakeholders, and the likelihood of our assumptions about the

system context before we hand over requirements to the developers or suppliers. Although

the level of detail may vary, this applies just as well for iterative as for sequential

development approaches.

Figure 4.14 Upstream quality reduces downstream waste

Foundation Level | Handbook | © IREB 110 | 158

Validation adds time and cost to the project, so its efficiency and effectiveness should be a

concern of the Requirements Engineer. Therefore, it is important to continuously monitor

and analyze defects that occur during development and in operation. If the root cause of

such defects appears to be in the requirements, the requirements validation process has

somehow failed. Therefore, as a Requirements Engineer, you should continuously and

actively look for opportunities to improve it.

4.4.1 Important Aspects for Validation

Regarding the concept of validation, certain aspects are important to get the maximum

value from it (see also [PoRu2015]):

▪ Involving the correct stakeholders

 As a Requirements Engineer, you need to decide who you want to invite to participate

in the validation. In this respect, one important aspect that you have to consider is the

degree of independence between the people involved in the elicitation of the

requirements and those validating them. A low level of independence (inviting

stakeholders who have already participated in the elicitation) is cheap and easy to

organize but may overlook certain defects because of the own focus, blind spots,

conflicting interests, or flawed assumptions of these persons. A higher degree of

independence (for instance, by inviting external reviewers or auditors) takes more

time and effort to organize and perform and brings higher (initial) costs but may in the

long run be more effective in finding more and more severe defects. Consequently,

higher risk in the project scope and/or the system context asks for a higher degree of

independence.

▪ Separating the identification and the correction of defects

 It may be tempting to fix every defect as soon as it has been detected. However, this

usually proves to be neither an efficient nor an effective way of working, as defects

may influence each other. A defect found later during validation might invalidate the

fixing of an earlier one. A requirement initially marked as defective might prove to be

correct when all requirements have been studied. You might decide not to fix some

(minor) defects in view of the effort involved related to the total set of defects found.

And after all, people involved in validating requirements should concentrate on

finding defects and not on developing ideas on how to fix them. Therefore, the

recommendation is to first select (a coherent set of) requirements for validation and

to decide whether or not to fix certain defects found only after checking the whole

set.

▪ Validation from different views

 A proper validation is always a group effort, not an activity performed by

Requirements Engineers on their own. The best results are achieved when validation

is performed by an interdisciplinary team in which selected participants contribute

their own expertise. In general, we can say that the input, the output, and peers should

be represented. In iterative projects, the current agile team is a reasonable choice,

Foundation Level | Handbook | © IREB 111 | 158

but the degree of independence may be low and additional validators should be

invited; in sequential projects, a specific team may be composed for each separate

validation effort. Depending on the phase of the project, input from business, users,

developers, testers, operators, and application managers is useful; sometimes,

subject matter experts or specialists on topics such as performance, security, and

usability can be added.

▪ Repeated validation

 In sequential projects, most requirements are elicited and documented in the initial

phase and validated thoroughly at the end of that phase. However, this should not be

the only moment for validation. During the rest of the project, new insights can lead to

the original set of requirements being updated, detailed, and expanded. This might

threaten the quality, coherence, and consistency of the requirements and thus

additional validations may be required. These are often planned at project milestones.

 In iterative projects, many of the agile rituals include validation efforts. Sprint

planning, backlog refinement, sprint reviews, and even daily standups offer

opportunities to validate and improve the requirements. However, these efforts often

focus on individual, detailed requirements and the big picture may be neglected. An

initial validation of the complete product backlog at the start of a project or

increment is a good beginning. Other useful initiatives are repeated hardening sprints

and additional overall validation at release times.

4.4.2 Validation Techniques

As for other techniques, the Requirements Engineer can choose from a large toolbox of

validation techniques that differ in formality and effort. Many factors influence the selection

of these techniques—for instance, the software development life cycle model, the maturity

of the development process, the complexity and risk level of the system, legal or regulatory

requirements, and the need for an audit trail.

Often, in the course of a project, the degree of effort and formality increases towards the

end, as final decisions about the system and its implementation have to be taken. Also, you

will see that the amount, value, and level of detail of feedback from the stakeholders

increase as the work products to be validated become more concrete and detailed. This

entails the application of different validation techniques in different stages of the project. At

the beginning of a project, frequent short, lightweight validation and feedback cycles are

preferred, as is usual in agile approaches. This ensures quality right from the start. Later in

the project, more formal and time-consuming one-off techniques will prevail.

Apart from that, you can also observe a change in the focus of validation activities. In early

phases of a project, the techniques are mostly used to validate the specification of

requirements. In later phases, the focus of the same techniques may shift to validating their

implementation.

Foundation Level | Handbook | © IREB 112 | 158

In general, we discern three categories of validation techniques (see Figure 4.15):

▪ Review techniques

▪ Exploratory techniques

▪ Sample development

Review techniques and sample development are called static, as they concentrate on

analyzing the specifications of a system without executing it. In exploratory techniques, the

validation focuses on the actual (or simulated) behavior of the system in operation; these

techniques are called dynamic.

Figure 4.15 Categories of validation techniques

The common feature of review techniques is that they rely on visual study of early and

intermediate work products. They range from informal to very formal and can be applied

from the very beginning of a project until the implementation of the system. In most cases,

reviewing the requirements is limited to the earlier phases of a project. Typically, in a review,

we check static work products that define or describe how the system should work. For more

information about reviewing, see [OleA2018].

Informal reviews usually follow the author-reviewer cycle. An author sends a work product to

a group of people with the request to validate it. Usually, this is a small group of team

members, peers, and/or users involved in the project. Authors may select the group by

themselves or its composition may be prescribed by company regulations. After a short (but

often not predefined) period, the author collects all review comments and uses them to

update the work product at hand. It is good practice to document the comments in a review

register and to keep track of the way in which they are processed. However, due to the

informal nature of this type of review, authors are free to decide whether and how to use the

Foundation Level | Handbook | © IREB 113 | 158

comments. Often, the review is repeated over several draft versions until the author is

satisfied with the quality.

As they are informal, you might expect little benefit from these kinds of reviews for validating

and improving the quality of requirements. However, if all participants are committed to quality,

and are able and willing to spend enough time on the review process, informal reviews are an

easy, cheap, and approachable means of validation. In fact, this approach is common for early

drafts. For the final version of a work product, a more formal technique may be a better choice.

Formal reviews follow a prescribed way of working. They are often used for important or

milestone work products, for final versions, and in situations where high risks are at stake.

While there are many flavors of formal reviews, they can be divided into two main groups:

▪ Walkthroughs

 The essence of a walkthrough is that the author of a work product explains it step by

step to an audience in an interactive session. In practice, walkthroughs come in two

variants, where (1) reviewers join the meeting without any preparation and listen to the

author, asking ad hoc questions; or (2) they obtain the work product before the

meeting and will prepare questions for the author. Participants in the audience can

make comments, identify flaws, and suggest alternatives. The author gives more

explanation if necessary and can discuss solutions for weaknesses identified and

weigh alternatives against the original ideas. There are two occasions where

walkthroughs are best applied: (a) in an early project phase to discuss the feasibility of

a certain system concept or solution outline; and (b) on the transfer of an

intermediate work product to another party who will use it as input for subsequent

development. In iterative projects, walkthroughs are mostly present in the form of

regular refinement sessions prior to an iteration and sprint reviews at the end of it.

▪ Inspections

 Inspections are among the most formal review techniques. Here, the responsibility for

the review lies not with the author but with an independent review leader, often called

moderator. An inspection is normally performed in the form of a meeting with the

moderator, the author, and a group of inspectors.

 The inspectors are selected from peers, business, users, and/or experts. They are

asked to check the work product based on their specific expertise, to verify its

adherence to applicable standards, norms, and regulations, and to evaluate it against

agreed objectives. Often, this check by the inspectors is performed during thorough

individual preparation prior to the actual meeting, guided by detailed checklists. In the

review meeting, the author participates in the role of a listener, explaining things that

are not clear and trying to understand the comments of the inspectors and the

consequences for the work product. Typically, an inspection follows a strict and

documented process that is managed by the moderator and focuses on finding

defects and measuring defined quality aspects and provides a detailed audit trail. In

this form, inspections are often used to decide on the release of a work product for a

Foundation Level | Handbook | © IREB 114 | 158

next step in the development process, or even for final implementation. Inspections

are mostly applied in (safety-) critical systems and business processes. In agile

approaches, this formal way of reviewing is incorporated in the methodology itself—

for example, with the Scrum ceremonies (refinement, planning, sprint review).

Exploratory techniques offer a group of stakeholders and prospective users the opportunity

to gain hands-on experience with an intermediate version of (part of) the system under

development. In contrast to reviews, exploratory techniques are dynamic: they look at the

(actual or simulated) behavior of the operative system as experienced by the users through

the user interfaces. The participants are invited to use the system in a way that is similar to

the intended use in production. They are relatively free to do so but sometimes certain

guidance is given. After a period of use, the participants report their experiences and their

feedback on the current behavior of the system to the Requirements Engineer. This may

include defects found and suggestions for improvement.

Exploratory techniques are common in iterative and design thinking development

approaches. In fact, the usual incremental development, starting with the release of a

minimum viable product (MVP), followed by the addition of more functionality step by step,

while carefully measuring market reactions and adjusting the system accordingly, can be

seen as an exploratory validation of the requirements in production.

Common exploratory techniques include:

▪ Prototyping

 In validation with prototyping, a specific early version of the system is given to a

group of stakeholders for evaluation. This version may be explicitly built for validation

purposes, after which it is discarded; we call this an exploratory or throwaway

prototype. Of course, evolutionary prototypes, which are continuously updated and

extended until they end up in the final product, can also be used for validation during

their development. The essence of any prototype is that, from the outside, it looks like

the intended system, allowing stakeholders to gain hands-on experience while the

internal structure may still be unfinished, inoperative, or even completely missing.

When using a prototype for validation, you may have it built to check a specific

characteristic, such as user interface, security, or performance.

▪ Elicitation and validation go together

 As we saw in Section 4.2.3, prototyping and storyboarding can also be used as

elicitation techniques. In fact, these techniques support both elicitation and

validation, going hand in hand: while validating requirements elicited at an earlier point

in time, you will almost certainly detect new requirements in the feedback from the

participants. Both aspects of prototyping are very prominent in design thinking

approaches (see [LiOg2011]).

Foundation Level | Handbook | © IREB 115 | 158

▪ Alpha testing and beta testing

 In alpha testing and beta testing, a fully featured, completely working pre-production

version of the system is provided to end users for operation with the intended

business processes in a realistic environment.

 Alpha testing is done at the developer’s site in a simulated environment. The group of

participants is relatively small, some guidance may be given, and it is possible to

observe the interaction of the users with the system—for instance, in a usability lab.

 Beta testing is conducted at the end user's sites in real production (or in whatever

environment the end users decide). The system is offered (mostly for free) to a

(sometimes selected but usually unknown) group of users, with the implicit request to

validate its looks and behavior. In beta testing, it is important to stimulate all

participants to give their feedback and to provide an easy way to do so. Analyzing this

feedback after a prolonged period of use can give valuable clues to the quality of the

requirements. It is particularly useful for checking certain assumptions made during

elicitation and development.

▪ A/B testing

 A/B testing is often performed with a released version of the system in the fully

operational environment but can also be applied with pre-release versions in a

protected test environment. The essence of A/B testing is that the system is offered

to different (mostly randomly selected) groups of users in two variants that differ in

design or functionality and realize the user goals in a different way. The reaction of

both groups is measured and compared; this works best when the groups are large

enough to allow for statistical analysis. The analysis will then give information on the

quality of the underlying requirements and on the correctness of previous

assumptions. A/B testing has a prominent role in The Lean Startup, one of the design

thinking approaches (see [Ries2011]).

In sample development, you provide a set of requirements as input for developers; they try to

produce some common intermediate work products (e.g., designs, code, test cases,

manuals) based on this input. The system itself is not operative (yet), so this kind of validation

is static, just like in reviewing. During this effort, the developers may detect flaws such as

unclarities, omissions, and inconsistencies that prevent them from producing their intended

output. Of course, these flaws will be fixed. At the same time, however, the quantity and

severity of the flaws detected is an indication of the quality of the requirements. If this

quality is not sufficient, more validation is necessary—for instance, additional reviews.

A similar validation can be performed by Requirements Engineers themselves. In that case,

you try to document a set of requirements in a different form of representation to the

original type: commonly, converting a requirements specification created in natural

language into a relevant model, or a specific model into a textual description. This exercise is

especially useful for detecting omissions. If you encounter serious problems in this

conversion, this indicates the need for additional validation.

Foundation Level | Handbook | © IREB 116 | 158

4.5 Further Reading

Glinz and Wieringa [GlWi2007] explain the notion and importance of stakeholders. Alexander

[Alex2005] discusses how to classify stakeholders. Bourne [Bour2009] deals with

stakeholder management. Lim, Quercia and Finkelstein [LiQF2010] investigate the use of

social networks for stakeholder analysis. Humphrey [Hump2017] discusses user personas.

Zowghi and Coulin [ZoCo2005] present an overview of requirements elicitation techniques.

Gottesdiener [Gott2002] has written a classic textbook on workshops in RE. Carrizo, Dieste

and Juristo [CaDJ2014] investigate the selection of adequate elicitation techniques.

Maalej, Nayebi, Johann and Ruhe [MNJR2016] discuss the use of explicit and implicit user

feedback for eliciting requirements. Maiden, Gitzikis and Robertson [MaGR2004] discuss

how creativity can foster innovation in RE.

The book by Moore [Moor2014] is a classic about conflict management. Glasl [Glas1999]

discusses how to handle conflicts. Grünbacher and Seyff [GrSe2005] discuss how to

achieve agreement by negotiating about requirements when validating requirements or

resolving conflicts.

Validation is covered in any RE textbook; see [Pohl2010], for example.

Foundation Level | Handbook | © IREB 117 | 158

5 Process and Working Structure

Whenever work has to be done in a systematic way, a process is required to shape and

structure the way of working and the creation of work products.

Definition 5.1. Process:

A set of interrelated activities performed in a given order to

process information or materials.

A Requirements Engineering (RE) process organizes how RE tasks are performed using

appropriate practices and producing work products required. However, there is no proven,

one-size-fits-all RE process (see Section 1.4). Consequently, Requirements Engineers have

to configure a tailored RE process that fits the given situation.

The RE process shapes the information flow and the communication model between the

participants involved in RE (for example, customers, users, Requirements Engineers,

developers, and testers). It also defines the RE work products to be used or produced. A

proper RE process provides the framework in which Requirements Engineers elicit,

document, validate, and manage requirements.

In this chapter, you will learn about the factors that influence the RE process and how to

configure an appropriate process from a set of process facets.

5.1 Influencing Factors

There are a variety of influencing factors to consider when configuring an RE process.

Before starting with the configuration of an RE process, these factors need to be

investigated and analyzed.

On the one hand, such analysis provides information about how to configure the RE process.

For example, when the analysis indicates that stakeholders have only a vague idea about

their requirements, an RE process should be chosen that supports the exploration of

requirements. On the other hand, the influencing factors constrain the space of possible

process configurations. For example, if the stakeholders are available only at the beginning

of a system development project, a process that builds upon continuous stakeholder

feedback would not be suitable. Below, we discuss important factors for the RE process.

Overall process fit. When defining or configuring an RE process, it is vital to know and

understand the overall development process chosen for the system to be developed—

defining an RE process that does not fit the overall process does not make sense. The overall

process may require work products that the RE process must deliver. The terminology used

for the RE process should be aligned to the terminology of the overall process. In particular,

the terminology for the work products must be aligned. This helps avoid confusion and

misunderstandings. It also makes the introduction of the RE process as well as the training

Foundation Level | Handbook | © IREB 118 | 158

and coaching of the people who have to work according to the process easier. For example,

if the system is developed using a linear, plan-driven process that relies on the existence of a

comprehensive system requirements specification and a system glossary at the end of the

requirements phase, the RE process chosen must fit into the requirements phase of the

overall process and produce the two work products required.

Development context. The development context also informs the RE process. Things to

consider include the customer-supplier-user relationship, development type, contract

issues, and trust. When analyzing the development context, a couple of questions need to be

answered:

▪ Customer-supplier-user relationship: Is there a designated customer who orders the

system and pays for it and a supplier who develops the system? Are customer and

supplier part of the same organization or do they belong to different organizations? If

the former is the case, which people act in the role of customer and which act as

supplier? Who are the users of the system? Do the users belong to the customer’s

organization?

 If not, do they use the system as a product or service for interacting with the

customer (for example, in electronic business) or do they buy the system as a product

or service from the customer (for example, a mobile app)?

▪ Development type: What is the organizational framework for the development of a

system? Typical types include:

▪ A supplier specifies and develops a system for a specific customer who will use

the system.

▪ An organization develops a system with the intention to sell it as a product or

service to many customers in a certain market segment.

▪ A supplier configures a system for a customer from a set of ready-made

components.

▪ A vendor enhances and evolves an existing product.

▪ Contract: Is there a contract or similar agreement that formally defines deliverables,

costs, deadlines, responsibilities, etc.? Contracts may be classic fixed-price

contracts between a customer and a supplier, with fixed functionality, deadlines, and

cost, or may just give a financial framework, while the functionality is defined

iteratively.

▪ Trust: Do the parties involved trust each other? If, for example, the customer and the

supplier do not trust each other, the requirements have to be specified in more detail

than would be necessary in a trust-based relationship.

Stakeholder availability and capability. The availability of stakeholders constrains the

configuration options for the RE process. For example, a process requiring continuous close

interaction with stakeholders cannot be chosen if core stakeholders are available only for a

short period of time at the beginning of the process.

Foundation Level | Handbook | © IREB 119 | 158

The capability of the stakeholders also influences the process: the less stakeholders are able

to express their needs clearly, and the less they know their actual needs, the more the RE

process must accommodate the exploration of requirements.

Shared understanding. Only little Requirements Engineering is needed when there is a high

degree of shared understanding (see Chapter 2, Principle 3) between stakeholders,

Requirements Engineers, designers, and developers about the problem and the

requirements. Consequently, the better the shared understanding, the more lightweight the

RE process can be [GlFr2015].

Complexity and criticality. The degree of detail to which requirements need to be specified

depends strongly on the complexity and criticality of the system to be developed. When a

system is complex and/or critical with respect to safety or security, the RE process chosen

must accommodate a detailed specification of the critical requirements, including formal or

semi-formal models and strong validation—for example, by verifying models that express

prescribed behavior or by building prototypes.

Constraints. Obviously, all influencing factors constrain the space of possible configurations

of an RE process. When we talk about constraints, we mean those constraints that are

explicitly imposed by, for example, the customer or a regulator. Such constraints may imply

the mandatory creation of certain work products and following a mandatory process for

producing these work products. Customers or regulators may also demand an RE process

that conforms to some given standard.

Time and budget available. If schedules and budgets are tight, the time and budget available

for RE need to be used wisely, which typically implies choosing a lightweight RE process.

Choosing an iterative RE process helps with prioritizing requirements and implementing the

most important ones within the given budget and schedule.

Volatility of requirements. If many requirements are likely to change, it is advisable to choose

an iterative, change-friendly RE process.

Experience of Requirements Engineers. The RE process chosen should match the

competencies and experience of the Requirements Engineers involved. Otherwise,

additional time and budget must be allocated to train and coach the process chosen. It is

better to choose a rather simple process that the Requirements Engineers can handle

properly than a sophisticated and complicated one that overburdens them.

5.2 Requirements Engineering Process Facets

Defining the RE process from scratch for every RE undertaking is a waste of effort.

Whenever the influencing factors allow it, the process should be configured from pre-

existing elements. In order to provide guidance on how to configure a proper RE process, we

describe three facets with two instances each, together with selection criteria to be

considered for each instance [Glin2019]. Later, in Section 5.3, we use these facets to

configure RE processes. Figure 5.1 shows an overview of the facets and instances.

Foundation Level | Handbook | © IREB 120 | 158

Figure 5.1 RE process facets

The facets can be considered to span a three-dimensional space of process configuration

options. Every facet instance comes with criteria for selecting it.

The applicability of these criteria stems from the analysis of the influencing factors

discussed in Section 5.1 above. Note that not all criteria need to be fulfilled to choose an

instance of a facet.

5.2.1 Time Facet: Linear versus Iterative

The time facet deals with the organization of RE activities on a time scale. We distinguish

between linear and iterative processes.

In a linear RE process, requirements are specified up front in a single phase of the process.

The idea is to produce a comprehensive requirements specification that requires no or only

little adaptation or few changes during the design and implementation of the system.

Creating a comprehensive requirements specification up front calls for a comprehensive

process. Thus, in most cases, linear RE processes are heavyweight processes.

Criteria for choosing a linear RE process:

▪ The development process for the system is plan-driven and mostly linear.

▪ The stakeholders are available, know their requirements, and can specify them up

front.

▪ A comprehensive requirements specification is required as a contractual basis for

outsourcing or tendering the design and implementation of the system.

▪ Regulatory authorities require a comprehensive, formally released requirements

specification at an early stage of the development.

Foundation Level | Handbook | © IREB 121 | 158

In an iterative RE process, requirements are specified incrementally, starting with general

goals and some initial requirements and then adding or modifying requirements in every

iteration. The idea is to intertwine the specification of requirements with the design and

implementation of the system. Due to short feedback loops and the ability to accommodate

change or things forgotten in later iterations, iterative RE processes can be lightweight

processes.

Criteria for choosing an iterative RE process:

▪ The development process for the system is iterative and agile.

▪ Many requirements are not known up front but will emerge and evolve during the

development of the system.

▪ Stakeholders are available such that short feedback loops can be established as a

means of mitigating the risk of developing the wrong system.

▪ The duration of the development allows for more than just one or two iterations.

▪ The ability to change requirements easily is important.

5.2.2 Purpose Facet: Prescriptive versus Explorative

The purpose facet deals with the purpose and role of the requirements in the development

of a system. We distinguish between prescriptive and explorative RE processes.

In a prescriptive RE process, the requirements specification constitutes a contract: all

requirements are binding and must be implemented. The idea is to create a requirements

specification that can be implemented with no or little further interaction between

stakeholders and developers.

Criteria for choosing a prescriptive RE process:

▪ The customer requires a fixed contract for system development, often with fixed

functionality, scope, price, and deadline.

▪ Functionality and scope take precedence over cost and deadlines.

▪ The development of the specified system may be tendered or outsourced.

In an explorative RE process, only the goals are known a priori, while the concrete

requirements have to be elicited. The idea is that requirements are frequently not known a

priori but have to be explored.

Criteria for choosing an explorative RE process:

▪ Stakeholders initially have only a vague idea about their requirements.

▪ Stakeholders are strongly involved and provide continuous feedback.

▪ Deadlines and cost take precedence over functionality and scope.

▪ The customer is satisfied with a framework contract about goals, resources, and the

price to be paid for a given period of time or number of iterations.

▪ It is not clear a priori which requirements shall actually be implemented and in which

order they will be implemented.

Foundation Level | Handbook | © IREB 122 | 158

5.2.3 Target Facet: Customer-Specific versus Market-Oriented

The target facet considers the development type: which kind of development do we target

with the RE process? On an elementary level, we distinguish between customer-specific and

market-oriented RE processes.

In a customer-specific RE process, the system is ordered by a customer and developed by a

supplier for this customer. Note that the supplier and the customer may be part of the same

organization. The idea is that the RE process reflects the customer-supplier relationship.

Criteria for choosing a customer-specific RE process:

▪ The system will be used mainly by the organization that has ordered the system and

pays for its development.

▪ The important stakeholders are mainly associated with the customer’s organization.

▪ Individual persons can be identified for the stakeholder roles.

▪ The customer wants a requirements specification that can serve as a contract.

In a market-oriented RE process, the system is developed as a product or service for a

market, targeting specific user segments. The idea is that the organization that develops the

system also drives the RE process.

Criteria for choosing a market-oriented RE process:

▪ The developing organization or one of its clients intends to sell the system as a

product or service in some market segment.

▪ Prospective users are not individually identifiable.

▪ The Requirements Engineers have to design the requirements so that they match the

envisaged needs of the targeted users.

▪ Product owners, marketing people, digital designers, and system architects are

primary stakeholders.

5.2.4 Hints and Caveats

It is important to note that the criteria given above are heuristics. They should not be

considered as a set fixed rules that always apply. For example, outsourcing the development

of the system is done preferably with a prescriptive RE process rather than with an

explorative one. This is because the contract between the customer and the supplier is

typically based on a comprehensive requirements specification. However, it is also possible

to negotiate an outsourcing contract based on an explorative RE process.

There may be prerequisites for choosing certain instances of process facets or the choice

may entail consequences that have to be considered. Here are some examples:

▪ Linear RE processes work only if a sophisticated process for changing requirements is

in place.

▪ Linear RE processes imply long feedback loops: it may take months or even years

from writing a requirement until its effects are observed in the implemented system.

Foundation Level | Handbook | © IREB 123 | 158

To mitigate the risk of developing the wrong system, requirements must be validated

intensively when using a linear RE process.

▪ In a market-oriented process, feedback from potential users is the only means of

validating whether the product will actually satisfy the needs of the user segment

targeted.

▪ In an agile setting, an iterative and explorative RE process fits best. Iterations have a

fixed length (typically 2-6 weeks). The product owner plays a core role in the RE

process, coordinating the stakeholders, organizing the RE work products, and

communicating the requirements to the development team.

The three facets mentioned above are not fully independent: the choice made for one facet

may influence what can or should be chosen in other ones. Here are some examples:

▪ Linear and prescriptive are frequently chosen together, which means that when

Requirements Engineers decide on a linear RE process, they typically decide on a

process that is both linear and prescriptive.

▪ Explorative RE processes are typically also iterative processes (and vice versa).

▪ A market-oriented RE process does not combine well with a linear and prescriptive

process.

5.2.5 Further Considerations

The degree to which an RE process must be established and followed, as well as the volume

of requirements work products to be produced in this process, depends on the degree of

shared understanding and also on the criticality of the system.

The better the shared understanding and the lower the criticality, the simpler and more

lightweight the RE process can be.

When there is little time and budget available for RE, the resources available must be used

carefully. Choosing an iterative and explorative process helps. Furthermore, the process

should focus on identifying and dealing with those requirements that are critical for the

success of the system.

Finally, the RE process should fit the experience of the Requirements Engineers. The lower

their skills and experience, the simpler the RE process should be made—it does not make

sense to define a sophisticated process when the people involved cannot enact this process

properly.

5.3 Configuring a Requirements Engineering Process

In a concrete system development context, Requirements Engineers or the person(s)

responsible for RE have to choose the RE process to be applied. We recommend analyzing

the influencing factors (see Section 5.1) first and then selecting a suitable combination of the

process facets described in Section 5.2.

Foundation Level | Handbook | © IREB 124 | 158

5.3.1 Typical Combinations of Facets

Three combinations of facets (or variants thereof) frequently occur in practice [Glin2019]. In

the following, we briefly describe each of them and characterize them in terms of their main

application case, typical work products, and typical information flow. Furthermore, we

provide an example. Figure 5.2 shows the three typical process configurations in the space

of the three facets.

Participatory RE Process: Iterative & Explorative & Customer-Specific

A participatory RE process is typically chosen in agile settings when there is a customer who

orders a system and a development team that designs and implements it. The focus is on

exploring the requirements in a series of iterations in close collaboration between the

stakeholders on the customer side, the Requirements Engineers, and the development team.

Main application case: Supplier and customer collaborate closely; stakeholders are

strongly involved in both the RE and the development processes.

Typical work products: Product backlog with user stories and/or task descriptions, vision,

prototypes

Typical information flow: Continuous interaction between stakeholders, product owners,

Requirements Engineers, and developers

Figure 5.2 Three typical RE process configurations and their relationship to the three facets

Foundation Level | Handbook | © IREB 125 | 158

Example: In an insurance company, the business unit that sells corporate insurances to small

and medium-sized enterprises has an idea about a new product for insuring customers against

the damage incurred by a hacker attack. They contract the corporate IT unit of the company to

form a development team with the task of designing and developing a new application that can

handle the new insurance product within the existing insurance sales support system. Also, the

existing insurance contract management system needs to be adapted accordingly. Beyond

some initial requirements, the contracting business unit has no clear idea how the new product

should look and how it should be supported by the corporate IT systems. Corporate IT adopted

agile development for all their projects some years ago.

In this situation, a participatory RE process is appropriate. It fits the overall agile process that

corporate IT will employ to develop the new system and adapt the existing ones.

Stakeholders from the business unit and Requirements Engineers from corporate IT can

jointly elicit the requirements for the new insurance product. As the process is iterative, the

development team can develop a prototypical minimum marketable product (MMP) that

helps the management of the business unit to decide whether or not to include the product

envisaged in their portfolio or discard the idea. There is a clear customer-supplier

relationship between the business unit and corporate IT, so a customer-oriented RE process

fits.

Contractual RE Process: Typically Linear & Prescriptive & Customer-Specific

A contractual RE process is typically chosen when the development of a system is tendered

and outsourced to a provider with a contract based on a comprehensive requirements

specification. It is also a suitable process for RE in large system development projects that

apply a waterfall-style development process.

Main application case: The requirements specification constitutes the contractual basis

for the development of a system by people not involved in the

specification and with little stakeholder interaction after the

requirements phase.

Typical work products: Classic system requirements specification, consisting of textual

requirements and models

Typical information flow: Primarily from stakeholders to Requirements Engineers

Foundation Level | Handbook | © IREB 126 | 158

Example: A car manufacturer is developing a new car platform, from which a family of car

models will be derived. A major design decision for the new platform is to get rid of the dozens

of electronic control units (ECUs) currently used in the cars and replace them with a single

control computer that runs a stack of driving control and driving assistance applications. The

goal is to save hardware costs, get rid of unwanted interactions between ECUs, and reduce

both time and effort for performing updates of the software. Engineers who are responsible for

the electronic systems of the new platform have written a customer requirements specification.

The company has contracted a large manufacturer of automotive control systems to create a

system requirements specification for the new centralized car control system. Later, the car

manufacturer will tender the design and implementation of the system based on that

specification. The manufacturer will require the implementation to be performed in several

iterations in order to ease testing and integration of the system with the new car platform.

In this situation, a contractual RE process is appropriate. The overall process is linear: the

system will be designed and implemented only after the requirements specification has been

completed. The fact that the implementation will be iterative does not impact the RE

process. Depending on the quality of the existing customer requirements specification and

the availability of the stakeholders at the car manufacturer, a linear or an iterative RE

process should be chosen.

Obviously, a customer-oriented RE process is needed. The existence of a customer

requirements specification and the fact that the system requirements specification will be

used to tender the design and implementation of the system call for a prescriptive RE

process.

Product-Oriented RE Process: Iterative & Explorative & Market-Oriented

A product-oriented RE process is typically chosen when an organization is developing a

system as a product or service for the market. In most cases, a product-oriented RE process

comes together with an agile product development process. The product owner and digital

designers play major roles in this process: they strongly influence and shape the product.

Main application case: An organization specifies and develops software in order to sell or

distribute it as a product or service

Typical work products: Product backlog with user stories and/or task descriptions, vision,

prototypes, user feedback

Typical information flow: Interaction between product owner, marketing, Requirements

Engineers, digital designers, and developers plus feedback from

customers/users

Example: A media company tasks its internal IT with a total renewal of the mobile news app that

the company sells to subscribers (with some content being freely accessible). From user

feedback, the company maintains a long log of customer criticism and improvement

suggestions.

Foundation Level | Handbook | © IREB 127 | 158

In particular, many users criticize the existing app for not being responsive enough, for

having bad support for reporting problems and suggestions, and for not supporting two-

finger zooming of text or images. The marketing department of the company also perceives

the layout of the app to be outdated. They predict that with a fresh layout, more subscribers

could be gained. The CEO of the company has decided that the IT department shall

collaborate with an external design agency for the visual appearance of the app. The

management of the media company wants a minimal product version as a proof of concept,

and then new intermediate versions every three weeks that can be reviewed by the

marketing department and the company’s board of executives.

In this situation, a product-oriented RE process fits best. Although there is a customer-

supplier relationship between the management of the company and its internal IT

department, the focus is clearly on creating a renewed product in the segment of mobile

news applications. The RE process needs to be explorative, as the requirements beyond the

information in the existing log of user feedback are not clear. The overall development

process has to be iterative according to the decision of the management of the company.

As the requirements need to be explored, an iterative RE process is the best fit here.

5.3.2 Other RE Processes

The three combinations described above cover many of the situations that occur in practice.

However, there may be situations where none of the aforementioned process configurations

fit. For example, regulatory constraints may impose the use of a process that conforms to a

given standard, such as ISO/IEC/IEEE 29148 [ISO29148]. In such a case, the RE process has

to be created by process experts from scratch or one of the aforementioned configurations

has to be tailored so that it is adapted to the given situation.

5.3.3 How to Configure RE Processes

We recommend a five-step procedure for configuring an RE process.

1. Analyze the influencing factors. Analyze your situation with respect to the list of

influencing factors from Section 5.1.

2. Assess the facet criteria. Based on the analysis from step 1, go through the list of

facet selection criteria given in Section 5.2. You may assign each criterion a value on a

five-point scale (––, –, 0, +, ++).

3. Configure. If the criteria analysis yields a clear result with respect to the three typical

configurations mentioned above, choose that configuration. Otherwise, choose a

different process tailoring, guided by the general goal of mitigating the risk of

developing the wrong system. For example, imagine a situation where the customer

demands a system requirements specification to be created up front, which calls for

a linear, prescriptive RE process. However, in your first meetings with the customer,

you have noticed that for an important subsystem, the customer has no clear idea

what to build, which calls for an explorative RE process. A potential solution could be

to choose a contractual RE process as the general RE process framework but create

a subproject that stepwise elicits the requirements for that important subsystem,

Foundation Level | Handbook | © IREB 128 | 158

creating prototypes in two or three iterations (guided by a participatory RE

subprocess), and then feed the results into the system requirements specification.

4. Determine work products. Based on your analysis and process configuration, define

the main RE work products that will be produced. Make sure that the RE work

products are aligned with the work products of the overall development process.

5. Select appropriate practices. For the tasks to be performed—for example, elicitation

of requirements—select the practices that fit best in the given situation. Many of

these practices, including hints about where and when to apply them, are presented in

Chapters 2, 4, and 6 of this handbook.

There is no proven, one-size-fits-all RE process. Based on an analysis of influencing factors, a

specific RE process needs to be tailored for every RE undertaking. A simple way of tailoring is

configuring an RE process from a set of process facets.

5.4 Further Reading

Armour [Armo2004] and Reinertsen [Rein1997], [Rein2009] provide general thoughts on

processes and information flows in processes.

Although the textbook of Robertson and Robertson [RoRo2012] is entitled “Mastering the

Requirements Process,” this is a general textbook on all aspects of RE.

Wiegers and Beatty [WiBe2013] provide a chapter about improving RE processes. The book

by Sommerville and Sawyer [SoSa1998] contains a collection of good practices to be used in

the framework of RE processes.

Foundation Level | Handbook | © IREB 129 | 158

6 Management Practices for Requirements

Requirements are not carved in stone, eternally present from past to future; they are alive!

They are born through elicitation, grow up through documentation, and are shaped through

validation. As adults, they go to work through implementation and after a—hopefully—long

and prosperous life in operation, they retire in oblivion. Throughout their life cycle, their

parents, the Requirements Engineers, take care of them. We nurse them in their infancy,

teach them in their youth, escort them in their relationships, and help them find a good job in

a healthy system. That is what we call requirements management.

Of course, there are better, more formal, definitions of requirements management. The

ISO/IEC/IEEE 29148:2018 [ISO29148] standard defines requirements management as

"activities that identify, document, maintain, communicate, trace and track requirements

throughout the life cycle of a system, product or service.". In the CPRE glossary [Glin2020],

requirements management is defined as “The process of managing existing requirements

and requirements related work products, including the storing, changing and tracing of

requirements.”. The CPRE glossary also tells us that requirements management is an integral

part of Requirements Engineering: “The systematic and disciplined approach to the

specification and management of requirements with the goal of …”.

Requirements management can occur at different levels:

▪ The individual requirements

▪ The work products that contain these requirements

▪ The system related to the work products and the requirements contained therein

In practice, requirements management is primarily performed at the work product level.

Usually a work product contains several individual requirements (e.g. an external interface

description), while other work products contain only a single requirement (e.g. a single user

story in an agile project) or they represent the whole set of requirements for a system (e.g.

software requirements specification). Be aware that all work products of all three levels must

be managed, and make sure that you know the relationships between them.

The text above outlines the what of requirements management. The rest of this chapter is

devoted to the how: all kinds of practices that are applicable to make requirements

management work. Before we dive into the details of requirements management, let us

consider some leading principles for making it work. If you want to manage something, you

must be able to recognize it, to store it, and to find it again. Therefore, unique identification,

an appropriate degree of standardization, avoidance of redundancy, a central repository,

and managed access are a must.

In Section 6.1, we take a short look at situations that influence the value, importance, and

effort involved in requirements management.

Section 6.2 follows the requirements in their life cycle as part of work products that

Requirements Engineers and other IT staff produce and use while developing, implementing,

and operating an IT system.

Foundation Level | Handbook | © IREB 130 | 158

During the lifecycle of a requirement, multiple versions of work products (and the

requirements they contain) are created, starting with an early 0.1 draft that, after a series of

major and minor changes, evolves into, say, a 3.2 final version. Version control is discussed in

Section 6.3.

When developing and using IT systems, it is impractical to deal with all requirements on an

individual basis. Therefore, coherent sets of requirements are recognized as configurations

and baselines, as explained in Section 0.

In order to handle work products and requirements efficiently, we must be able to identify

them and collect data about them. That is the topic of Section 6.5.

Section 6.6 looks at requirements traceability. Traceability is an especially important quality

characteristic of requirements, as you may have already understood when reading the

definitions of requirements management above. Without traceability, it is impossible to link

the actual behavior of a system to the original demands of the stakeholders.

Section 6.7 deals with the changes to requirements that occur during their lifetime. In the

first phases of their existence, changes can be frequent, but after validation, requirements

should be stable. However, changes will still occur. To apply them in an orderly manner, a

defined process for handling change should be in place.

By nature, requirements differ in importance and value. Usually, resources to elaborate them

are limited, so not every requirement will make it to implementation. This means that

stakeholders will have to decide when a certain requirement will be implemented or even

whether or not it will be implemented at all. Prioritization, described in Section 6.8, can

underpin this decision.

6.1 What is Requirements Management?

In the introduction, we have already seen that requirements management means the

management of existing requirements and requirements-related work products, including

storing, changing, and tracing the requirements. But why manage them at all?

We manage requirements because they are living things; they are created, used, updated,

and deleted again during both their development and operation. And during this whole life

cycle, we must make sure that all parties involved have access to the correct versions of all

requirements that are relevant to them. If we do not manage requirements properly, we face

the risk that some parties may overlook requirements, stick to outdated requirements, work

with wrong versions, overlook relationships, and so on. This can seriously hinder the

efficiency and effectiveness of system development and usage. In other words: the value of

proper requirements management lies in the improved efficiency and effectiveness of a

system.

This means that the value of requirements management cannot be separated from the value

of the system in question and its context. In practice, we can see huge differences in the

importance and level of requirements management and the effort involved [Rupp2014],

ranging from an informal subsidiary task of a Requirements Engineer with a spreadsheet, to

Foundation Level | Handbook | © IREB 131 | 158

a full-time function of a dedicated requirements manager with a tool-supported database of

requirements.

More thorough requirements management is needed with larger numbers of requirements,

stakeholders, and developers, with a longer expected lifetime, more changes or higher

quality demands on the system, and with a more complex development process, more strict

standards, norms, and regulations, including the need for a detailed audit trail.

Often, we see that requirements management is somewhat neglected at the beginning of a

project, when a small team is working on an obvious set of high-level requirements. Later on,

complexity increases and the team loses the overview, resulting in quality problems and

reduced efficiency. Then, a lot of effort has to be spent on catching up with the required level of

control. It is more efficient to invest some effort right from the start of a project to set up the

requirements management resources and processes with the expected demands at the end in

mind.

6.2 Life Cycle Management

As stated in the introduction, requirements and work products that contain requirements

have a life. We see them being created, elaborated, validated, consolidated, implemented,

used, changed, maintained, reworked, refactored, retired, archived, and/or deleted. That is

what we mean by their life cycle: during its life, a requirement can be in a limited number of

states and can show a limited number of state transitions based on explicit events in the

context. Figure 6.1 shows a simplified statechart as a model for the life cycle of a single

requirement (overview only, state transitions are not shown; for instance, the transition from

the composite state Under development to In production may be triggered by a go-live

decision from the product owner).

Figure 6.1 Simplified statechart of a requirements life cycle

Foundation Level | Handbook | © IREB 132 | 158

A complicating factor is that work products and individual requirements have their own

different life cycles that only partially overlap. As an example, think of a work product

definition study in the state under change; this does not necessarily mean that all

requirements contained in the work product have to be changed. And for the same definition

study, the state implemented makes no sense; only some requirements in it will be

implemented—or better: certain code, based on these requirements.

Another complicating factor may be that in practice, the view of the life cycle of

requirements is different for different roles. For you as a Requirements Engineer, to trace

your work you are interested in different states to the project manager, and other states

again compared to the product manager or a change manager: in the diagram above, your

interest might end at validated, while for the project manager, it only starts at documented.

Requirements Engineers actively manage the life cycle of their work products. Life cycle

management implies:

▪ Defining life cycle models for your work products and the requirements contained in

them with

▪ The states that a work product or requirement can take

▪ The transitions allowed between these states

▪ The events that trigger the transition from one state to another

▪ Ensuring that only explicitly allowed transitions occur

▪ Recording the actual states that the work products and requirements take

▪ Recording the actual transitions that occur

▪ Reporting on these states and transitions

In simple words: make sure that you know the state that your requirements were in, are in,

and will take, how they can change, and why this all happens.

For instance, as a Requirements Engineer, you could be asked to report who approved which

version of a requirement to be released as input for the coding phase. Keeping track of

requirements states in their life cycle can also be useful for building dashboards and reporting

on the progress of a project. It can be a good way to organize work and identify which

requirements to work on first.

The state of a work product under life cycle management is often recorded in an attribute

(see Section 6.5). It may also be useful to document the beginning and the end date of that

state in attributes. In agile projects, the state of a work product (item) can be derived from its

position in the product backlog, task backlog, and/or on the task board. Also, meeting the

criteria of the definition of ready and the definition of done can give relevant information, as

meeting these criteria actually means attaining a next state.

Foundation Level | Handbook | © IREB 133 | 158

The thoroughness and level of detail of the life cycle management should be tailored to the

needs of the customer, the project, and the system. For instance, the states under

development, in production, and archived might be sufficient. In complex or critical projects,

you may need a far more detailed model of the states, strict procedures about state transitions,

and an audit trail that shows what happened during the project.

6.3 Version Control

It is common for both, work products and individual requirements as part of a work product,

to undergo certain changes during their life cycle (see Section 6.7 for more information on

handling these changes). After every change, the work product is different to what it was

before: it has become a new version.

We want to control the versions of these work products for two reasons:

▪ Sometimes changes go wrong. After a while, defects are found, or the intended

benefits are not realized. In such a case, we may implement new changes in a next

version but we can also decide to go back to a previous version and continue from

there. Or maybe, on second thought, we just prefer the earlier version after all.

▪ We want to know the history of the work product, understand its evolution right from

its origin up to its present situation. This may help us when we have to decide on

future changes, or just answer questions on why the current work product is what it is.

Version control requires three measures to be in place:

▪ An identification of each version, to distinguish between the different versions of a

work product. This is the version number, often supplemented with a version date.

▪ A clear description of each change. You must be able to tell—and understand—the

difference between a certain version and its predecessor. This change description

must be clearly linked to the version number.

▪ A strict policy on the storage of versions, enabling you to locate and retrieve old

versions. Unless storage limitations dictate otherwise, you should preserve all

previous versions of all your work products, otherwise you may not be able to restore

a version if you need it. On the other hand, unlimited storage will rarely be the case, so

it is wise to also have a policy for archiving and cleaning up work products that are no

longer used.

Usually, a work product contains multiple requirements. If a single requirement in that work

product changes, both that requirement and the work product should get a new version

number, while the unchanged requirements in that work product keep their old version number.

This might soon become very confusing. A practical solution may be to do version numbering at

the work product level only and let all requirements in it inherit the version number and the

change history of the work product.

Foundation Level | Handbook | © IREB 134 | 158

Version numbers are typically composed of (at least) two parts:

▪ Version. In principle, the version starts at zero as long as the work product is under

development. When it is formally approved, released, and/or launched, we assign it

version one. After that, the version is increased only for major, substantive updates.

▪ Increment. This mostly starts at one and is incremented with every (externally visible)

change, on the content side or often only textual or editorial. An additional sub-

increment may be used for correction of typos only. The increment nine is sometimes

used to denote a final version just before approval or release.

A new version number is assigned with each formal change.

Often, a change in the life cycle state of a work product is not considered a reason for

incrementing the version number, unless it is accompanied by a change in content or text. If, for

instance, a requirement receives the state validated and the version number 1.0 after approval,

there is no need to change this version number if the state changes to under construction and

subsequently to implemented. The state can finally end in archived but still keep the same

version number 1.0.

6.4 Configurations and Baselines

Suppose you preserve, as advised above, all versions of all requirements that you develop

during a project. You will then have an ever-expanding database filled with requirements and

you will start to lose the overview. One day, your client comes to your desk and asks: “We have

implemented your system at all our branches. Now there seems to be a problem with the

calculations in our Barcelona office. Can you tell me what version of the calculation

requirements they use there?” If you cannot answer that question, you will wish that you had

paid more attention to configuration management.

So, what is a configuration? You will find a definition in the CPRE glossary [Glin2020] but in

short, for a Requirements Engineer, a configuration is a consistent set of logically related

work products that contain requirements. We select this set with a specific purpose, usually

to make clear which requirements are or were valid in a certain situation.

This sets the following properties for a correct configuration:

▪ Logically connected. The set of requirements in the configuration belongs together in

view of a certain goal.

▪ Consistent. The set of requirements has no internal conflicts and can be integrated in

a system.

▪ Unique. Both the configuration itself and its constituent requirements are clearly and

uniquely identified.

▪ Unchangeable. The configuration is composed of selected requirements, each with a

specific version that will never be changed in this configuration.

Foundation Level | Handbook | © IREB 135 | 158

▪ Basis for reset. The configuration allows fallback to a previous configuration if any

undesired changes appear to have occurred.

A configuration is documented as a work product, with a unique identification, a state, and a

version number and date, just like any other work product. However, because a configuration

is by definition unchangeable, it will always have only one version (e.g., 1.0).

A configuration always has two dimensions [CoWe1998]:

▪ The product dimension.

 This indicates which requirements are included in this specific configuration.

Sometimes, a configuration will contain all available requirements but usually, it is a

certain selection—for instance, all requirements that are implemented in the French

release of a system. The British release of the same system might then have a

different configuration.

▪ The version dimension.

 In a specific configuration, every selected requirement is present in exactly one, and

only one, version. It might be the latest version or an earlier one, depending on the

purpose of the configuration itself. As soon as even a single different version of a

single requirement is selected, this is a new configuration. Imagine a system for which

a new release will be implemented with some requirements in a higher version: this

new release will then have a different configuration.

Figure 6.2 gives another example of different configurations consisting of specific sets of

versions of requirements.

Figure 6.2 Example of configurations

Foundation Level | Handbook | © IREB 136 | 158

The figure above shows an example of different configurations of a certain system. It shows a

collection of nine requirements. Some of them are still in the early stages of development—e.g.,

requirement 6 with version v0.1. Other requirements have had more versions—for instance,

requirement 1, which is finalized and has already had a major update, so is now version v2.0.

The left-hand picture shows the configuration that is currently in production. It consists of R1

v2.0, R2 v1.0, R3 v1.2 (this requirement had two minor updates after implementation), R5 v2.0,

R7 v1.0, and R9 v1.0. R4, R6, and R8, being under development, are not present in this

configuration, nor are the new versions of R7 and R9.

The right-hand picture shows the configuration that, at the same time, is present in the system

test environment. Some requirements (R1, R2) are the same, some are no longer present (R3,

R5), the requirements under development (R4, R6, and R8) are included here, and two

requirements (R7 and R9) are present in a higher version than in the configuration of the

production environment.

In many projects some configurations are treated in a special way: these configurations are

called baselines. A baseline is a stable, validated, and change-controlled configuration that

marks a milestone or another kind of resting point in the project. An example can be the

configuration at the end of the design phase, just before starting the coding phase, or the

configuration that is valid at the go-live of a certain release.

The sprint backlog in an agile project serves as the baseline at the start of the next iteration.

Baselines are useful for planning purposes as they represent a stable starting point for a next

phase. They are often frozen and set aside as an anchor in the hectic life of a project. If

something goes terribly wrong in the project, the team can perform a roll-back to the

situation of the baseline and restart from there.

For the Requirements Engineer, it is mainly the configuration of work products containing

requirements that is important. But in practice, the configuration within a project has a much

broader scope, containing selected versions of the work products of all team members, such

as requirements, designs, code and test cases. In complex projects, configuration

management can be a full-time job, performed with dedicated tooling.

6.5 Attributes and Views

As a Requirements Engineer, your output consists of all kinds of work products containing

requirements. These requirements will have to be managed, otherwise you and your team will

quickly lose the overview. To manage the requirements, you have to collect and maintain

data about them—metadata, data about data. Metadata makes work products tangible,

manageable; through metadata, you can provide and obtain information about the

requirements and answer questions that are relevant during and after the project or product

life cycle. Think of questions like "Which requirements are planned for the next release?" or

"How much effort is this release likely to take?" or “How many requirements have a high

priority?”

When considering the requirements as entities about which information is required, the

characteristics of these requirements are called attributes. In this chapter, we have already

seen some common attributes, such as the unique identification, version number, state,

Foundation Level | Handbook | © IREB 137 | 158

several dates. The attributes to be defined for the requirements depend on the information

needs of the stakeholders of the project and the system. At the start of a project, an

attribute schema should be set that enables the Requirements Engineer to fulfill these needs.

A good starting point can be found in relevant standards. The ISO standard [ISO29148]

mentions:

▪ Identification. Each requirement should have a unique, immutable identifier, such as a

number, name, mnemonic. Without a proper identification, requirements

management is impossible.

▪ Stakeholder priority. The (agreed) priority of the requirement from the viewpoint of

the stakeholders. See Section 6.8 for information on how to determine this priority.

▪ Dependency. Sometimes, there is a dependency between requirements. This may

mean that a low-priority requirement should be implemented first because another,

high-priority requirement depends on it.

▪ Risk. This is about the potential that the implementation of the requirement will lead to

problems, such as damage, extra costs, delays, legal claims. By nature, this is an

estimate, to be based on consensus among stakeholders.

▪ Source. What is the origin of the requirement, where did it come from? You may need

this information for validation, conflict resolution, modification, or deletion.

▪ Rationale. The rationale gives you the reason why the requirement is needed, the

objectives of the stakeholders that should be fulfilled by it.

▪ Difficulty. This is an estimate of the effort needed to implement the requirement. It is

needed for project planning and estimation.

▪ Type. This attribute indicates whether the requirement is a functional or a quality

requirement or a constraint.

There are many ways to store this information. It may be contained in documents or stored in

a spreadsheet or database, with the requirements as rows and their attributes as columns. In

agile settings, requirements may be recorded on story cards, where the rubrics on the card

are the attributes. As discussed in Chapter 7, requirements management tools should offer

functionality for storing data about requirements and also reporting on them.

Attributes allow you to provide information about your work products and the requirements

contained therein. The simplest way to do so is to produce a report with all the data on all the

versions of all requirements. For anything but the simplest system, such a report will be

useless as nobody will be able to oversee all the information because it is overwhelmingly

complex. Therefore, you should adjust your reports based on the information needs of your

target audiences. This is done by using views [Glin2020].

A view is an (often predefined) way to filter and sort the data on your work products,

resulting in a report that shows precisely what the audience needs, no more, no less. A view is

defined with the explicit purpose of delivering relevant information for a specific target

group.

Foundation Level | Handbook | © IREB 138 | 158

We discern three types of views:

▪ Selective views. These views give information on a deliberate selection of the

requirements instead of all requirements. For example, a view on only the latest

versions of the requirements, or all requirements with the state validated, or on the

requirements with stakeholder priority high; the focus might be on a subsystem, or on

the contrary to provide an abstract overview of the system through its high-level

requirements only.

▪ Projective views. A projective view shows a selection from all data (attributes) of the

requirements—for example, only the identification, the version number, and the

name.

▪ Aggregating views. In an aggregating view, you will find summaries, totals, or

averages, calculated from a set of requirements. An example would be the total

number of requirements per department: e.g., 4 from Sales, 5 from Logistics.

Figure 6.3 gives an example of these types of views.

Figure 6.3 Different types of views

In most cases, a combination of views is used—for instance, if you want to provide a list with

the IDs, version numbers, names, and types (= projective) of all the requirements for the

Sales department (= selective).

Foundation Level | Handbook | © IREB 139 | 158

6.6 Traceability

Throughout this handbook, we have mentioned the topic of traceability [GoFi1994]. Without

proper traceability, Requirements Engineering is hardly feasible, as you cannot do the

following:

▪ Provide evidence that a certain requirement is satisfied

▪ Prove that a requirement has been implemented and by what means

▪ Show product compliance with applicable laws and standards

▪ Look for missing work products (e.g., find out whether test cases exist for all

requirements)

▪ Analyze the effects of a change to requirements (see Section 6.7)

In many cases, especially for safety-critical systems, process standards even explicitly

demand the implementation of traceability.

There are three types of questions that can be answered with the aid of traceability (see also

Figure 6.4):

▪ Backward traceability: What was the origin of a certain requirement? Where was it

found? Which sources (stakeholders, documents, other systems) were analyzed

during elicitation?

 Backward traceability is as well-known as pre-requirements specification traceability.

▪ Forward traceability: Where is this requirement used? Which deliverables (coded

modules, test cases, procedures, manuals) are based on it?

 Forward traceability is as well-known as post-requirements specification traceability.

▪ Traceability between requirements: Do other requirements depend on this

requirement or vice versa (e.g., quality requirements related to a functional

requirement)? Is the requirement a refinement of a higher-level requirement (e.g., an

epic refined in a number of user stories, a user story detailed with a number of

acceptance criteria)? How are they related?

Foundation Level | Handbook | © IREB 140 | 158

Figure 6.4 Traceability types

There are several ways of documenting traceability. Often, this is done implicitly—for

instance, by applying document structures, standard templates, or naming conventions. If

you identify all your requirements with the code Req-xxx-nnn, where xxx stands for the

department that requested the requirement, everybody will understand that Req-sal-012 is a

requirement for the Sales department (for backward traceability). If you publish a document

listing all the requirements that will be implemented in the release of July 1st, you are

providing implicit forward traceability information.

And if you write a document with a dedicated section on, e.g., price calculations, that could

be an example of traceability between requirements. Another example could be a high-level

model and a textual description of detailed requirements related to it.

In more complex projects, traceability should (also) be documented explicitly. For explicit

traceability, you document the relationship between work products based on their unique

identification. This can be done in various forms [HuJD2011]:

▪ Making use of specific attributes such as Source suggested by the ISO standard

[ISO29148]

▪ In documents, adding references to predecessor documents, other work products, or

individual requirements

▪ Developing a traceability matrix in a spreadsheet, or a database table (see an

example in Table 6.1 below)

▪ In textual documentation, using Wiki-style hyperlinks

▪ Visualizing traceability relationships in a trace graph (Figure 6.4 is a simplified form of

such a graph)

In many cases, a requirements management or configuration management tool (see

Chapter 7) provides functionality to support traceability. Managing traceability in a

Foundation Level | Handbook | © IREB 141 | 158

substantial project can be complicated, especially if you also have to take versioning into

account. In such a case, good tooling is indispensable.

Table 6.1 Example of a traceability matrix

Source R1 R2 R3 R4 R5 R6 R7

Interview Mrs. Smith 06/08 X X X

Summary questionnaire May 12 X X X X

Field observation report 07/03 X X X

Company regulations version 17.a.02 X X X

Documentation API HRM system v3.0.2.a X X X

6.7 Handling Change

“Principle 7: Welcome changing requirements, even late in development. Agile processes

harness change for the customer’s competitive advantage.” [BeeA2001]. The founding

fathers of the agile movement were crystal clear on this: requirement changes will always

occur, whether you like them or not. Many people do not like changes at all, because every

change is a risk, a threat to the stability of the project and the system.

However, changing a requirement is not a stand-alone event: it is triggered by changes in the

system context, by new insights of the stakeholders, by behavior of competitors, and so on;

a law becomes effective, adding a new constraint to the system; due to growing market

demand, the performance of the system has to be improved; a competitor system is

launched with some delighter features that your client wants too. A change should thus be

seen as a chance to get a better system, to provide more value to the users.

However, regardless of the situation, every change is also a risk. It can introduce defects,

leading to system failure. It can delay the progress of the project. It can take more effort and

money than was calculated before. The users may not like it and refuse to work with it. In

short, things can go wrong and disturb a previously stable project or system. But that does

not mean that changes are bad and should be avoided; it does mean that all changes must

be handled carefully to get optimal value at acceptable costs with minimal risk.

In the literature on IT service management (see [Axelos2019]), change enablement is

described as one of the core practices. This practice ensures that changes are implemented

effectively, safely, and in a timely manner in order to meet stakeholders’ expectations. The

practice balances effectiveness, throughput, compliance, and risk control. It focuses on

three aspects:

▪ Ensuring that all risks have been accurately assessed

▪ Authorizing changes to proceed

▪ Managing the change implementation

Foundation Level | Handbook | © IREB 142 | 158

Change enablement implies that an organization assigns a change authority to decide on the

changes and defines a process for handling them. See Figure 6.5 for an outline of this

process. These measures are usually tuned to the development approach and the point in

time where a change occurs.

Figure 6.5 Change enablement process

As long as a requirement is in a draft state, the author has the authority to change it and no

strict process is followed.

As soon as a requirement is released for further use in the project, the author is no longer

free to decide, as every change will have an impact on other work products based on this

requirement. Before deciding whether a change should be implemented, an impact analysis

should be performed to clarify the efforts and risks of the change. This is where traceability

is indispensable. In a linear development approach, the change authority will often be

assigned to project management, a steering committee, or a Change Control Board, and a

process is followed, with a formal decision on the change and the planning of its

implementation. In an iterative development approach, the change authority usually lies with

the product owner, who decides on the change and adds an accepted change to the product

backlog as a new item (work product). The further implementation is then handled just like

any other product backlog item.

Once a requirement is implemented in an operational system, an even stricter process

should be followed, as every change will now influence users and business processes.

Here, a distinction is often made between standard (low-risk, well understood, and pre-

authorized, e.g., a change to the VAT percentage), normal (based on a formal Request for

Change, scheduled, assessed, and authorized, e.g., a change to a price calculation

algorithm), and emergency changes (to be implemented as soon as possible, e.g., to resolve

an incident—but that seldomly involves a change of requirements). Usually, the change

authority lies with a Change Advisory Board [Math2019]; in an iterative approach like DevOps,

a change may be authorized by a release manager.

Foundation Level | Handbook | © IREB 143 | 158

6.8 Prioritization

Requirements themselves are just concepts in the minds of people. They bring value only

when they are implemented in an operational system. This implementation takes effort, time,

money, and attention. In most cases, these resources are limited, which means that not all

requirements can be implemented, at least not at the same time. This in turn means that the

stakeholders have to decide which requirements should come first and which could be

implemented later (or not at all). In other words: prioritization [Wieg1999].

The priority of a requirement is defined as the level of importance assigned to it according to

certain criteria [Glin2020]. Consequently, you first have to determine what criteria should be

used to assess the requirements before you can prioritize them. However, before you can

determine the assessment criteria, you must know what the goal of the prioritization is. That

goal is usually not your goal as a Requirements Engineer but the goal of certain stakeholders,

so you must decide who the stakeholders are for this prioritization. And when you know their

goal, it will usually be clear that not all requirements will have to be prioritized but rather only

a defined subset.

Summarizing the above, we can outline a sequence of steps to be followed if we want to

prioritize requirements:

▪ Define major goals and constraints for the prioritization

 Project and system context largely determine the reasons for prioritization. If, for

instance, you prioritize to decide which features will be implemented in the next

release, you might focus on business value; if the goal is to select user stories for the

next iteration, story points and technical dependencies would be more prominent.

Technical or legal constraints might limit the choices to be made.

▪ Define desired assessment criteria

 In principle, the goals and constraints dictate the criteria to be used. Commonly used

criteria are business value for stakeholders, urgency perceived by users, effort to

implement, risks for usage, logical and technical dependencies, the legally binding

nature of a requirement, or just the (inter-) subjective preference of relevant

stakeholders. Sometimes only a single criterion is used but a balanced selection of

several relevant criteria may yield a better outcome.

▪ Define the stakeholders that have to be involved

 Goals and constraints influence which stakeholders you should involve in the

prioritization but on the other hand, certain stakeholders themselves set these goals,

so you must be aware of the interdependency. As an example, when prioritizing for

the launch of a new system, you would probably invite business representatives and a

panel of future customers. When prioritizing the product backlog to decide on the

next iteration, the scrum team would be involved.

Foundation Level | Handbook | © IREB 144 | 158

▪ Define the requirements that have to be prioritized

 It is unlikely that the whole set of requirements has to be prioritized. Once again, this

depends primarily on the goals and constraints for prioritizing. For instance,

constraints may dictate certain requirements to be must-haves. In fact, it is only

useful to prioritize requirements for which you have a choice whether or not to include

them in a next step of the development process. This means that the project phase is

also an important factor. In an early phase, you might include draft versions in the

prioritization; in a late phase, you will often restrict prioritization to requirements that

are in a stable version. Be aware that requirements to be prioritized should be at a

comparable level of abstraction depending on the prioritization goals. In an early

project phase, for instance, you might prioritize themes or features while prioritizing

user stories at iteration planning.

▪ Select the prioritization technique

 A prioritization technique is the way in which your stakeholders prioritize the

requirements. As described below, there are several techniques, which differ in effort,

thoroughness, and level of detail. Here too, goals and constraints set the stage, but

the most important factor is that the stakeholders involved agree on the technique

that they intend to use. If not, they will not accept the outcome and your prioritization

effort is in vain.

▪ Perform prioritization

 When all preparation has been done, the actual prioritization can be performed. First,

all defined assessment criteria shall be applied to all selected requirements. Together

with the stakeholders involved, you then apply the selected prioritization technique to

the requirements assessed. As a result, you get a prioritized list of requirements.

However, there might be a problem. Different stakeholders might have different

priorities, even if they agree on the criteria assessed. In that case, you typically have a

requirements conflict that should be resolved just like any other conflict as described

in Section 4.3 on conflict resolution.

Taking a closer look at prioritization techniques, we distinguish between two categories:

▪ Ad hoc techniques

 With ad hoc techniques, experts assign priorities to the selected requirements based

on their own experience. In principle, this prioritization is based on a single criterion,

being the subjective perception of the expert. If this expertise is at a high level and

acceptable to the stakeholders, such a technique can be a quick, cheap, and easy

way to achieve prioritization. A variant would be to invite several experts and

calculate some kind of average priorities. Common ad hoc techniques include Top-10

ranking and MoSCoW (Must have, Should have, Could have, Won’t have this time)

prioritization. Kano analysis (Section 4.2.1) is also useful: the dissatisfiers are must-

Foundation Level | Handbook | © IREB 145 | 158

haves, the satisfiers should-haves, and the delighters can be could- or won’t-haves.

For more background, see, for example, [McIn2016].

▪ Analytical techniques

 Analytical techniques employ a systematic process for assigning priorities. In such

techniques, experts assign weights to multiple assessment criteria (such as benefit,

cost, risk, time to implement, etc.) and subsequently, requirements priorities are

calculated as weighted outcomes based on these criteria. Such techniques take more

effort and time but have the advantage of giving a clear insight into the factors that

determine the priorities and into the process by which the priorities are established.

This can stimulate the acceptance of the outcome among the stakeholders.

However, two aspects must be kept in mind. First, the outcome is heavily influenced

by the weight factors that are used in the calculation of the result. Therefore, an

agreement among the stakeholders about these weight factors must be established

before the actual prioritization. Otherwise, some might try to change the weight

factors in order to manipulate the priorities. The second aspect to consider is that the

criteria assessed are mostly estimates, not measured facts. And the estimates are

often on a simple ordinal scale such as low, medium, high. Thus, the quality of the

estimates is decisive for the quality of the resulting prioritization. Nevertheless,

analytical techniques are useful for providing a clearly underpinned prioritization that

is understood and thus accepted by the stakeholders involved. For a detailed

explanation of analytical techniques, see [Olso2014].

It may be tempting to apply detailed, thorough techniques and spend a lot of time producing

perfectly accurate estimates in terms of money, hours, expected sales numbers, etc. This could

result in requirement A having a calculated priority of 22.76, requirement B of 23.12, and

requirement C of 20.29. You would then conclude that evidently, C must be done first and A

prior to B. However, you have probably just introduced a pseudo-accuracy with this calculation,

and it would be better to conclude that those three requirements are equally important, which

might have been your gut feeling right from the start.

Always make sure that the effort you spend in prioritizing is justified by the value of a correct

prioritization itself. So once again, keep the goals in mind and remember Principle 1: value

orientation.

6.9 Further Reading

The textbooks by Pohl [Pohl2010], Davis [Davi2005], Hull, Jackson and Dick [HuJD2011], van

Lamsweerde [vLam2009] and Wiegers and Beatty [WiBe2013] provide a comprehensive

overview of requirements management. Additional insights to the topic of requirements

management is consolidated in the CPRE Advanced Level handbook for Requirements

Management by Bühne and Herrmann [BuHe2019].

Cleland-Huang, Gotel and Zisman [ClGZ2012] provide an in-depth treatment of traceability.

Olson [Olso2014] and Wiegers [Wieg1999] deal with prioritization techniques.

Foundation Level | Handbook | © IREB 146 | 158

7 Tool Support

A Requirements Engineer needs tools to practice his craftsmanship properly—just as a

carpenter needs his tools, pencil, a hammer, saw, and drill to design and realize a piece of

furniture. Without tools, it is difficult or impossible to record the requirements, work together

on the requirements, and be in control of the requirements.

This chapter examines the different types of Requirements Engineering (RE) tools available

and the aspects that need to be taken into account to introduce Requirements Engineering

tools into an organization.

7.1 Tools in Requirements Engineering

Requirements Engineering is a difficult task without the support of tools. Tools are needed to

support Requirements Engineering tasks and activities. Existing tools focus on supporting

specific tasks, such as documenting requirements or supporting the RE process, and rarely

on all tasks and activities in the Requirements Engineering process. It is therefore not

surprising that the Requirements Engineer must have a set of tools at his disposal to support

the various components in the Requirements Engineering process—just as the carpenter

needs several tools (e.g., computer-aided design (CAD)) to design a piece of furniture and

needs tools like a saw, scraper, and sandpaper to realize it.

Tools are just an aid to the Requirements Engineering process and the Requirements

Engineer, and such tools are called CASE (computer-aided software engineering) tools.

CASE tools support a specific task in the software production process [Fugg1993].

We differentiate between different types of tools that support the following aspects of

Requirements Engineering:

▪ Management of requirements

 Tools in this category have the properties needed to support the activities and topics

described in Chapter 6. With these kinds of tools, more control can be established

over the Requirements Engineering process. Requirements are subject to change and

in an environment where this happens frequently, a tool with the relevant properties is

indispensable. Tools in this category support:

▪ Definition and storage of requirements attributes to identify and collect data

about work products and requirements as described in Section 6.5

▪ Facilitation and documentation of the prioritization of requirements (Section 6.8)

▪ Life cycle management, version control, configurations and baselines as

described in Sections 6.2, 6.3, and 0

▪ Tracking and tracing of requirements, as well as defects in the requirements and

work products (Section 6.6)

▪ Change management for requirements; as we learned in Section 6.7, changes are

inevitable and have to be carefully managed

Foundation Level | Handbook | © IREB 147 | 158

▪ Requirements Engineering process

 To support the Requirements Engineering process, information is needed to allow the

process to be adjusted or improved. This kind of tool can:

▪ Measure and report on the Requirements Engineering process and workflow

▪ This information helps to improve the Requirements Engineering process and

reduces waste.

▪ Measure and report on the product quality

▪ This information helps to find defects and flaws, which in turn can be used to

improve product quality.

▪ Documentation of knowledge about the requirements

 The amount of knowledge (and requirements) built up in a project can be enormous.

In addition, a large amount of knowledge is built up about a product during its life

cycle. All the relevant information must be carefully documented to enable the

following:

▪ Sharing and creation of a common understanding of the requirements

▪ Securing the requirements as a legal obligation

▪ An overview of and insight into the requirements

▪ Modeling of requirements

 As we learned in Section 3.4.1.6, expressing requirements in both diagrams and

natural language uses the strengths of both forms of notation. A tool that can model

requirements allows you to:

▪ Structure your own thoughts; it can be used as an aid to thinking

▪ Specify the requirements in a more formal language than textual requirements,

with all benefits that brings

▪ Collaboration in Requirements Engineering

 When several people and disciplines work on the same project, a tool can support and

enable this collaboration, especially in the world in which we now live, where more and

more activities are performed locally (at home). This kind of tool supports the

elicitation, documentation, and management of requirements.

▪ Testing and/or simulation of the requirements

 Tools are becoming more and more sophisticated. More and more options are being

developed for testing and/or simulating requirements in advance. This allows a better

prediction of whether the proposed requirements will have the intended effect.

The tools available are often a mix of the above. As mentioned before, different tools may

need to be combined to adequately support Requirements Engineering. If different tools are

used, it is important to pay attention to the integration between them and the interaction

with other applications and systems in order to ensure smooth operation.

Sometimes, other kinds of tools (for example, office or issue-tracking tools) are used, or

rather, misused, to document or manage requirements. However, these tools have their

Foundation Level | Handbook | © IREB 148 | 158

limitations and should be used only when the Requirements Engineers and stakeholders are

in control of the RE process and requirements are aligned. Otherwise, this is a major risk in

the RE process, as such tools do not support any requirements management activities.

7.2 Introducing Tools

Selecting an RE tool is no different to selecting a tool for any other purpose. You should

describe the objectives, context, and requirements before selecting and implementing the

appropriate tool(s).

Tools are just an aid to the Requirements Engineering process and the Requirements

Engineer. They do not solve organizational or human issues. Imagine that, together with your

colleagues, you want to document the requirements in a uniform manner. Tools can support

this—for instance, with a template in a word processing tool or wiki page. This does not

ensure that all your colleagues adopt this working method, neither does it ensure that your

colleagues have the discipline to record and manage their requirements in this way. What

can help is to make agreements with each other, to check whether the agreements are being

fulfilled, and to be able to communicate with each other if agreements are not adhered to. A

tool is not going to help you with this. Introducing a Requirements Engineering tool requires

clear Requirements Engineering responsibilities and procedures.

A tool can help you to configure your Requirements Engineering process effectively and

efficiently. Tools often provide a framework based on best practices experience. These

frameworks can then be tailor-made to suit the situation.

As we have learned in the previous chapters, core Requirements Engineering activities are

not stand-alone processes.

Selecting the appropriate RE tools starts with the definition of the objectives and/or

problems you want to solve in the RE process. The next step is to determine the context of

the system (in this case, the tool set). Consider the aspects of the context—i.e., stakeholders,

processes, events, etc., and apply your Requirements Engineering skills to specify the

requirements for the RE tools. Practice what you preach.

The next sections describe some of the aspects that have to be taken into account when

introducing a (new) Requirements Engineering tool into your organization.

7.2.1 Consider All Life Cycle Costs beyond License Costs

The most obvious costs, such as purchase costs or licensing costs, are usually factored in. In

addition, less visible costs must also be taken into account, such as the use of resources in

the implementation, operation, and maintenance of the tool.

7.2.2 Consider Necessary Resources

Specifying the requirements and supervising the selection process requires the necessary

resources, in addition to the costs mentioned in the previous section. People necessary to

Foundation Level | Handbook | © IREB 149 | 158

guide the selection process, Requirements Engineers, hardware resources, and other

resources should not be overlooked. After the tool has been put into use, resources may also

be required for maintenance and user support.

7.2.3 Avoid Risks by Running Pilot Projects

The introduction of a new tool can threaten the control over the current requirements base.

A requirements chaos can arise because there is a transition from the old working method

and/or tools to the new working method and tools. Introduction of a new tool during an

existing project will irrevocably lead to a delay in the delivery of the requirements and even

the project.

The introduction of a new tool, possibly with a different working method, should be tested on

a small scale, where the risks and impact remain manageable. There are several ways to do

this:

▪ Apply the tool to a non-critical project/system

▪ Use the tool redundantly alongside an existing project

▪ Apply the tool to a fictional situation/project

▪ Import/copy the requirements of a project that has already been completed

When you have reached the point where the tool meets the set goals and requirements, it

can be rolled out more widely within the organization or other projects.

7.2.4 Evaluate the Tool according to Defined Criteria

Selecting the appropriate tool can be a difficult task. Extensive verification of whether the

objectives and requirements are met is a standard approach in Requirements Engineering. A

systematic approach that assesses the tool from different perspectives also contributes to

making the right choice. The following perspectives can be considered:

▪ Project perspective

 This point of view highlights the project management aspects. Does the tool support

the project and the information required in the project?

▪ Process perspective

 This perspective verifies the support of the Requirements Engineering process. Does

the tool sufficiently support the RE process? Can it be sufficiently adapted to the

existing RE process and working method?

▪ User perspective

 This perspective verifies the degree of application by the users of the tool. This is an

important view because if users are not satisfied with the tool, the risk of the tool not

being accepted increases. Does the tool sufficiently support the authorization of

users and groups? Is it sufficiently user-friendly and intuitive?

Foundation Level | Handbook | © IREB 150 | 158

▪ Product perspective

 The functionalities offered by the tool are verified from this angle. Are the

requirements sufficiently covered by the tool? Where is the data stored? Is there a

roadmap with the functional extensions for the tool? Is the tool still supported by the

supplier for the time being?

▪ Supplier perspective

 With this perspective the focus lies on the service and reliability of the supplier. Where

is the supplier located? How is the support for this tool arranged?

▪ Economic perspective

 This perspective looks at the business case: does the tool deliver sufficient benefits in

relation to the costs? What are the (management) costs for the purchase and

maintenance? What does the tool provide for the RE process? Is a (separate)

maintenance contract required?

▪ Architecture perspective

 This perspective assesses how the tool fits into the (IT) organization. Does the

technology applied suit the organization? Can the tool be sufficiently linked with other

systems? Does the tool fit into the IT landscape and does it comply with the

architectural constraints?

7.2.5 Instruct Employees on the Use of the Tool

Once a tool has been selected, the users should become familiar with the opportunities the

tool can add to the Requirements Engineering process. The users—i.e., the Requirements

Engineers—should be trained in how to use the tool in the existing Requirements Engineering

process. If the users are not sufficiently trained, this may mean that not all the benefits of the

tool are used. In fact, it is possible that the tool will be used incorrectly, with all the associated

consequences.

The Requirements Engineering process can also be changed due to the tool selected.

Aspects in the Requirements Engineering process that were not possible before can be

made possible with a new tool: for example, adequate version management, modeling of

requirements, etc. This can mean that new procedures are agreed, templates are adapted or

applied, changes are made to the working method, and so on. The involvement of the

Requirements Engineer in this change contributes to the success of the tool's acceptance.

7.3 Further Reading

The following literature can be consulted for an overview of available tools and tool

evaluations. Juan M. Carrillo de Gea et. al. provide a comprehensive overview of the role of

Requirements Engineering tools [dGeA2011].

Foundation Level | Handbook | © IREB 151 | 158

The article by Barbara Kitchenham, Stephen Linkman, David Law [KiLL1997] describes and

validates a method for systematic tool evaluation. If you are searching for an RE tool, a

comprehensive list of tools for Requirements Engineering is provided on the Volere website

[Vole2020] or at [BiHe2020].

Foundation Level | Handbook | © IREB 152 | 158

8 References

[Alex2005] Ian F. Alexander: A Taxonomy of Stakeholders – Human Roles in System

Development. International Journal of Technology and Human Interaction

2005, 1(1), 23–59.

[AnPC1994] Annie I. Antón, W. Michael McCracken, Colin Potts: Goal Decomposition and

Scenario Analysis in Business Process Reengineering. CAiSE (Conference on

Advanced Information Systems Engineering), 1994, 94–104.

[Armo2004] Philip G. Armour. The Laws of Software Process: A New Model for the

Production and Management of Software. Boca Raton, Fl.: CRC Press, 2004.

[Axelos2019] Axelos: ITIL Foundation: ITIL 4 Edition. Axelos Ltd., 2019.

[BaBo2014] Stéphane Badreau, Jean-Louis Boulanger: Ingénierie des Exigences. Paris:

Dunod, 2014 (in French).

[BeeA2001] Kent Beck et al.: Principles behind the Agile Manifesto.

http://agilemanifesto.org/principles.html, 2001. Last visited August 2022.

[BiHe2020] Andreas Birk, Gerald Heller: List of Requirements Management Tools.

https://makingofsoftware.com/resources/list-of-rm-tools/, 2020, Last visited

August 2022.

[Boeh1981] Barry W. Boehm: Software Engineering Economics, Englewood Cliffs, New

Jersey: Prentice Hall, 1981.

[BoRJ2005] Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling

Language User Guide, 2nd edition. Reading, MA: Addison-Wesley, 2005.

[Bour2009] Lynda Bourne: Stakeholder Relationship Management - A Maturity Model for

Organisational Implementation. Farnham: Gower, 2009.

[BuHe2019] Stan Bühne, Andrea Herrmann: Handbook Requirements Management

according to the IREB Standard – Education and Training for the IREB Certified

Professional for Requirements Engineering Qualification Advanced Level

Requirements Management. Karlsruhe: IREB.

https://www.ireb.org/downloads/#cpre-advanced-level-requirements-

management-handbook, 2019. Last visited August 2022.

[CaDJ2014] Dante Carrizo, Oscar Dieste, Natalia Juristo: Systematizing Requirements

Elicitation Technique Selection. Information and Software Technology 2014,

56(6), 644–669.

[Chen1976] Peter P.-S. Chen: The Entity-Relationship Model: Toward a Unified View of

Data, ACM Transactions on Database Systems 1976, 1(1), 9–36.

[ClGZ2012] Jane Cleland-Huang, Olly Gotel, Andrea Zisman (eds.): Software and Systems

Traceability. London: Springer, 2012.

[Cock2001] Alistair Cockburn: Writing Effective Use Cases. Boston: Addison-Wesley, 2001.

http://agilemanifesto.org/principles.html
https://makingofsoftware.com/resources/list-of-rm-tools/
https://www.ireb.org/downloads/#cpre-advanced-level-requirements-management-handbook
https://www.ireb.org/downloads/#cpre-advanced-level-requirements-management-handbook

Foundation Level | Handbook | © IREB 153 | 158

[Cohn2004] Mike Cohn: User Stories Applied: For Agile Software Development. Boston:

Addison-Wesley, 2004.

[Cohn2010] Mike Cohn: Succeeding with Agile: Software Development Using Scrum. Upper

Saddle River, NJ: Addison-Wesley, 2010.

[CoWe1998] Reidar Conradi, Bernhard Westfechtel: Version Models for Software

Configuration Management. ACM Computing Surveys 1998, 30(2), 232–282.

[DaTW2012] Marian Daun, Bastian Tenbergen, Thorsten Weyer: Requirements Viewpoint. In:

K. Pohl, H. Hönninger, R. Achatz, M. Broy: Model-Based Engineering of

Embedded Systems, Heidelberg: Springer, 2012.

[Davi1993] Alan M. Davis: Software Requirements – Objects, Functions, and States. 2nd

Edition, Englewood Cliffs, New Jersey: Prentice Hall, 1993.

[Davi1995] Alan M. Davis: 201 Principles of Software Development. New York: McGraw-

Hill, 1995.

[Davi2005] Alan M. Davis: Just Enough Requirements Management - Where Software

Development Meets Marketing. New York: Dorset House, 2005.

[DeBo2005] Edward De Bono: De Bono's Thinking Course (Revised Edition), Barnes & Noble

Books, 2005.

[DeCo2007] Design Council: 11 Lessons: A Study of the Design Process.

https://www.designcouncil.org.uk/resources/report/11-lessons-managing-

design-global-brands, 2007. Last visited August 2022.

[dGeA2011] Juan M. Carrillo de Gea, Joaquín Nicolás, José L. Fernandez-Alemán,

Ambrosio Toval, Christof Ebert, Aurora Vizcaíno: Requirements Engineering

Tools. IEEE Software 2011, 28(4), 86–91.

[DeMa1978] Tom DeMarco: Structured Analysis and System Specification. New York:

Yourdon Press, 1978.

[DIN66001] DIN 66001:1983-12: Information processing; graphical symbols and their

application. Deutsches Institut für Normung e.V., Berlin, 1983 (in German).

[Eber2014] Christof Ebert: Systematisches Requirements Engineering, 5. Auflage.

Heidelberg: dpunkt 2014 (in German).

[Fowl1996] Martin Fowler: Analysis Patterns: Reusable Object Models. Reading, MA:

Addison-Wesley, 1996.

[FLCC2016] Xavier Franch, Lidia Lopez, Carlos Cares, Daniel Colomer. (2016). The i*

Framework for Goal-Oriented Modeling. In Domain Specific Conceptual

Modeling, Springer, 485-506.

[Fugg1993] Alfonso Fuggetta: A Classification of CASE Technology. IEEE Computer 1993,

26(12), 25–38.

[GaWe1989] Donald C. Gause and Gerald M. Weinberg: Exploring Requirements: Quality

before Design. New York: Dorset House, 1989.

https://www.designcouncil.org.uk/resources/report/11-lessons-managing-design-global-brands
https://www.designcouncil.org.uk/resources/report/11-lessons-managing-design-global-brands

Foundation Level | Handbook | © IREB 154 | 158

[GFPK2010] Tony Gorschek, Samuel Fricker, Kenneth Palm, and Steven A. Kunsman: A

Lightweight Innovation Process for Software-Intensive Product Development.

IEEE Software 2010, 27(1), 37–45.

[GGJZ2000] Carl A. Gunter, Elsa L. Gunter, Michael Jackson, Pamela Zave: A Reference

Model for Requirements and Specifications. IEEE Software 2000, 17(3), 37–43.

[GHJV1994] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Pattern –

Elements of Reusable Object-Oriented Software. Reading, Mass.: Addison-

Wesley, 1994.

[Gilb1988] Tom Gilb: Principles of Software Engineering Management. Reading, Mass.:

Addison Wesley, 1988.

[Glas1999] Friedrich Glasl: Confronting Conflict – A First-Aid Kit for Handling Conflict.

Stroud, Gloucestershire: Hawthorn Press, 1999.

[GlFr2015] Martin Glinz and Samuel A. Fricker: On Shared Understanding in Software

Engineering: An Essay. Computer Science – Research and Development 2015,

30(3-4), 363–376.

[Glin2007] Martin Glinz: On Non-Functional Requirements. 15th IEEE International

Requirements Engineering Conference, Delhi, India, 2007, 21–26.

[Glin2008] Martin Glinz: A Risk-Based, Value-Oriented Approach to Quality Requirements.

IEEE Software 2008, 25(2), 34–41.

[Glin2016] Martin Glinz: How Much Requirements Engineering Do We Need?

Softwaretechnik-Trends 2016, 36(3), 19–21.

[Glin2019] Martin Glinz: Requirements Engineering I. Course Notes, University of Zurich,

2019. https://www.ifi.uzh.ch/en/rerg/courses/archives/hs19/re-

i.html#resources. Last visited August 2022.

[Glin2020] Martin Glinz: A Glossary of Requirements Engineering Terminology. Version 2.0.

https://www.ireb.org/downloads/#cpre-glossary, 2020. Last visited August

2022.

[GlWi2007] Martin Glinz and Roel Wieringa: Stakeholders in Requirements Engineering

(Guest Editors’ Introduction). IEEE Software 2007, 24(2), 18–20.

[GoFi1994] Orlena Gotel, Anthony Finkelstein: An Analysis of the Requirements

Traceability Problem. 1st International Conference on Requirements

Engineering, Colorado Springs, 1994, 94–101.

[GoRu2003] Rolf Goetz, Chris Rupp: Psychotherapy for System Requirements. 2nd IEEE

International Conference on Cognitive Informatics (ICCI’03), London, 2003,

75–80.

[Gott2002] Ellen Gottesdiener: Requirements by Collaboration: Workshops for Defining

Needs, Boston: Addison-Wesley Professional, 2002.

https://www.ifi.uzh.ch/en/rerg/courses/archives/hs19/re-i.html#resources
https://www.ifi.uzh.ch/en/rerg/courses/archives/hs19/re-i.html#resources
https://www.ireb.org/downloads/#cpre-glossary

Foundation Level | Handbook | © IREB 155 | 158

[GreA2017] Eduard C. Groen, Norbert Seyff, Raian Ali, Fabiano Dalpiaz, Joerg Doerr,

Emitzá Guzmán, Mahmood Hosseini, Jordi Marco, Marc Oriol, Anna Perini,

Melanie Stade: The Crowd in Requirements Engineering - The Landscape and

Challenges. IEEE Software 2017, 34(2), 44–52.

[Greg2016] Sarah Gregory: “It Depends”: Heuristics for “Common Enough” Requirements.

Keynote speech at REFSQ 2016, Essen, Germany, 2016.

[GRL2020] Goal oriented Requirement Language. University of Toronto, Canada

https://www.cs.toronto.edu/km/GRL. Last visited August 2022.

[GrSe2005] Paul Grünbacher, Norbert Seyff: Requirements Negotiation. In A. Aurum, C.

Wohlin (eds.): Engineering and Managing Software Requirements. Berlin:

Springer, 2005, 143-162.

[Hare1988] David Harel. On Visual Formalisms. Communications of the ACM 1988, 31(5),

514–530.

[HoSch2020] Stefan Hofer, Henning Schwentner: Domain Storytelling — A Collaborative

Modeling Method. Available from Leanpub,

http://leanpub.com/domainstorytelling. Last visited August 2022.

[HuJD2011] Elizabeth Hull, Ken Jackson, Jeremy Dick: Requirements Engineering. 3rd ed.,

Berlin: Springer: 2011.

[Hump2017] Aaron Humphrey: User Personas and Social Media Profiles. Persona Studies

2017, 3(2), 13–20.

[IEEE830] IEEE Recommended Practice for Software Requirements Specifications. IEEE

Std 830-1998, 1998.

[ISO19650] ISO 19650. Organization and Digitization of Information about Buildings and

Civil Engineering Works, including Building Information Modelling (BIM)–

Information Management Using Building Information Modelling – Part 1 and 2,

2018.

[ISO5807] ISO/IEC/IEEE 1985-02: Information processing; Documentation symbols and

conventions for data, program and system flowcharts, program network

charts and system resources charts. International Organization for

Standardization, Geneva, 1985.

[ISO25010] ISO/IEC/IEEE 25010:2011: Systems and software Quality Requirements and

Evaluation (SQuaRE) – System and software quality models. International

Organization for Standardization, Geneva, 2011.

[ISO29148] ISO/IEC/IEEE 29148: Systems and Software Engineering – Life Cycle

Processes – Requirements Engineering. International Organization for

Standardization, Geneva, 2018.

[Jack1995] Michael Jackson: Software Requirements and Specifications: A Lexicon of

Practice, Principles and Prejudices. New York: ACM Press, 1995.

https://www.cs.toronto.edu/km/GRL
http://leanpub.com/domainstorytelling

Foundation Level | Handbook | © IREB 156 | 158

[Jack1995b] Michael Jackson: The World and the Machine. 17th International Conference on

Software Engineering 1995 (ICSE 1995), 287–292.

[Jaco1992] Ivar Jacobson: Object-oriented software engineering: a use case driven

approach. New York: ACM Press, 1992.

[JaSB2011] Ivar Jacobson, Ian Spence, Kurt Bittner: Use Case 2.0: The Guide to

Succeeding with Use Cases. Ivar Jacobson International SA, 2011.

[KiLL1997] Barbara Kitchenham, Stephen Linkman, David Law: DESMET: A Methodology

for Evaluating Software Engineering Methods and Tools. Computing & Control

Engineering Journal 1997, 8(3), 120–126.

[KSTT1984] Noriaki Kano, Nobuhiku Seraku, Fumio Takahashi, Shinichi Tsuji: Attractive

Quality and Must-Be Quality. Hinshitsu (Quality – Journal of the Japanese

Society for Quality Control) 1984, 14(2), 39-48 (in Japanese).

[Laue2002] Søren Lauesen: Software Requirements: Styles and Techniques. London:

Addison-Wesley, 2002.

[LaWE2001] Brian Lawrence, Karl Wiegers, and Christof Ebert: The Top Risks of

Requirements Engineering. IEEE Software 2001, 18(6), 62–63.

[LiOg2011] Jeanne Liedtka, Tim Ogilvie: Designing for Growth: A Design Thinking Tool Kit

for Managers. New York: Columbia University Press, 2011.

[LiSS1994] Odd I. Lindland, Guttorm Sindre, Arne Sølverg: Understanding Quality in

Conceptual Modeling. IEEE Software 1994, 11(2), 42–49.

[LiSZ1994] Horst Lichter, Matthias Schneider-Hufschmidt, Heinz Züllighoven: Prototyping

in Industrial Software Projects – Bridging the Gap Between Theory and

Practice. IEEE Transactions on Software Engineering 1994, 20(11), 825–832.

[LiQF2010] Soo Ling Lim, Daniele Quercia, Anthony Finkelstein: StakeNet: Using Social

Networks to Analyse the Stakeholders of Large-Scale Software Projects. 32nd

International Conference on Software Engineering (ICSE 2010), 2010, 295–304.

[MaGR2004] Neil Maiden, Alexis Gizikis, Suzanne Robertson: Provoking Creativity: Imagine

What Your Requirements Could Be Like. IEEE Software 2004, 21(5), 68–75.

[Math2019] Joseph Mathenge: Change Control Board vs Change Advisory Board: What’s

the Difference? https://www.bmc.com/blogs/change-control-board-vs-

change-advisory-board, Nov. 22, 2019. Last visited August 2022.

[McIn2016] John McIntyre: MoSCoW or Kano Models – How Do You Prioritize?

https://www.hotpmo.com/management-models/moscow-kano-prioritize, Oct.

20, 2016. Last visited August 2022.

[MNJR2016] Walid Maalej, Maleknaz Nayebi, Timo Johann, and Guenther Ruhe: Toward

Data-Driven Requirements Engineering. IEEE Software 2016, 33(1), 48–54.

[Moor2014] Christopher W. Moore: The Mediation Process – Practical Strategies for

Resolving Conflicts, 4th edition. Hoboken, NJ: John Wiley & Sons, 2014.

https://www.bmc.com/blogs/change-control-board-vs-change-advisory-board
https://www.bmc.com/blogs/change-control-board-vs-change-advisory-board
https://www.hotpmo.com/management-models/moscow-kano-prioritize

Foundation Level | Handbook | © IREB 157 | 158

[MWHN2009] Alistair Mavin, Philip Wilkinson, Adrian Harwood, and Mark Novak: Easy

Approach to Requirements Syntax (EARS). 17th IEEE International

Requirements Engineering Conference (RE'09), Atlanta, Georgia, 2009, 317–

322.

[NuKF2003] Bashar Nuseibeh, Jeff Kramer, Anthony Finkelstein: ViewPoints: Meaningful

Relationships are Difficult! 25th International Conference on Software

Engineering (ICSE'03), Portland, Oregon, 2003, 676–681.

[OleA2018] K. Olsen et al.: Certified Tester, Foundation Level Syllabus - Version 2018.

International Software Testing Qualifications Board, 2018.

[Olso2014] David Olson: Matrix Prioritization. http://www.bawiki.com/wiki/Matrix-

Prioritization.html, 2014. Last visited August 2022.

[OMG2013] Object Management Group: Business Process Model and Notation (BPMN),

version 2.0.2. OMG document, formal/2013-12-09.

https://www.omg.org/spec/BPMN/. Last visited August 2022.

[OMG2017] Object Management Group: OMG Unified Modeling Language (OMG UML),

version 2.5.1. OMG document, formal/2017-12-05.

https://www.omg.org/spec/UML/About-UML/. Last visited August 2022.

[OMG2018] Object Management Group: OMG Systems Modeling Language (OMG

SysML™), version 1.6. OMG document, ptc/2018-12-08.

https://www.omg.org/spec/SysML/About-SysML/. Last visited August 2022.

[Osbo1948] Alex F. Osborn: Your Creative Power: How to Use Imagination. C. Scribner's

Sons, 1948. (Accessed as digital reprint: Read Books Ltd. (epub eBook), April

2013).

[Pich2010] Roman Pichler: Agile Product Management with Scrum – Creating Products

that Customers Love, Boston: Addison-Wesley, 2010.

[Pohl2010] Klaus Pohl: Requirements Engineering: Fundamentals, Principles, and

Techniques. Berlin-Heidelberg: Springer, 2010.

[PoRu2015] Klaus Pohl, Chris Rupp: Requirements Engineering Fundamentals: A Study

Guide for the Certified Professional for Requirements Engineering Exam, (2nd

ed). Rocky Nook, Santa Barbara, 2015.

[Rein1997] Donald G. Reinertsen: Managing the Design Factory – A Product Developer’s

Toolkit. The Free Press, 1997.

[Rein2009] Donald G. Reinertsen: The Principles of Product Development Flow: Second

Generation Lean Product Development. Redondo Beach, Ca.: Celeritas

Publishing, 2009.

[Ries2011] Eric Ries: The Lean Startup: How Today's Entrepreneurs Use Continuous

Innovation to Create Radically Successful Businesses. New York: Crown

Business, 2011.

http://www.bawiki.com/wiki/Matrix-Prioritization.html
http://www.bawiki.com/wiki/Matrix-Prioritization.html
https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/SysML/About-SysML/

Foundation Level | Handbook | © IREB 158 | 158

[Robe2001] S. Ian Robertson: Problem Solving. Hove, East Sussex: Psychology Press, 2001.

[RoRo2012] Suzanne Robertson and James Robertson: Mastering the Requirements

Process: Getting Requirements Right. 3rd edition. Boston: Addison-Wesley,

2012.

[RuJB2004] James Rumbaugh, Ivar Jacobson, Grady Booch: The Unified Modeling

Language Reference Manual, 2nd edition. Reading, MA: Addison Wesley, 2004.

[Rupp2014] Chris Rupp: Requirements-Engineering und Management, 6. Auflage.

München: Hanser, 2014 (in German).

[SoSa1998] Ian Sommerville and Pete Sawyer: Requirements Engineering: A Good Practice

Guide. Chichester: John Wiley & Sons, 1997.

[SwBa1982] William Swartout and Robert Balzer: On the Inevitable Intertwining of

Specification and Implementation. Communications of the ACM 1982, 25(7),

438–440.

[Verd2014] Dave Verduyn: Discovering the Kano Model, in: Kano model,

https://www.kanomodel.com/discovering-the-kano-model, 2014. Last visited

August 2022.

[vLam2009] Axel van Lamsweerde: Requirements Engineering: From System Goals to UML

Models to Software Specifications. Chichester: John Wiley & Sons, 2009.

[Vole2020] Volere Requirements Resources: https://www.volere.org. Last visited August

2022.

[WiBe2013] Karl Wiegers and Joy Beatty: Software Requirements. 3rd edition. Redmond,

Wa.: Microsoft Press, 2013.

[Wieg1999] Karl E. Wiegers: First Things First: Prioritizing Requirements.

https://www.processimpact.com/articles/prioritizing.pdf, 1999. Last visited

August 2022.

[ZoCo2005] Didar Zowghi, Chad Coulin: Requirements Elicitation: A Survey of Techniques,

Approaches, and Tools. In A. Aurum, C. Wohlin (eds.) Engineering and

Managing Software Requirements. Berlin: Springer, 2005, 19–46.

https://www.kanomodel.com/discovering-the-kano-model
https://www.volere.org/
https://www.processimpact.com/articles/prioritizing.pdf

	Version History
	Content
	1 Introduction and Overview
	1.1 Requirements Engineering: What
	1.2 Requirements Engineering: Why
	1.3 Requirements Engineering: Where
	1.4 Requirements Engineering: How
	1.5 The Role and Tasks of a Requirements Engineer
	1.6 What to Learn about Requirements Engineering
	1.7 Further Reading

	2 Fundamental Principles of Requirements Engineering
	2.1 Overview of Principles
	2.2 The Principles Explained
	2.2.1 Principle 1 – Value orientation: Requirements are a means to an end, not an end in itself
	2.2.2 Principle 2 – Stakeholders: RE is about satisfying the stakeholders’ desires and needs
	2.2.3 Principle 3 – Shared understanding: Successful systems development is impossible without a common basis
	2.2.4 Principle 4 – Context: Systems cannot be understood in isolation
	2.2.5 Principle 5 – Problem, requirement, solution: An inevitably intertwined triple
	2.2.6 Principle 6 – Validation: Non-validated requirements are useless
	2.2.7 Principle 7 – Evolution: Changing requirements are no accident, but the normal case
	2.2.8 Principle 8 – Innovation: More of the same is not enough
	2.2.9 Principle 9 – Systematic and disciplined work: We can’t do without in RE

	2.3 Further Reading

	3 Work Products and Documentation Practices
	3.1 Work Products in Requirements Engineering
	3.1.1 Characteristics of Work Products
	3.1.2 Abstraction Levels
	3.1.3 Level of Detail
	3.1.4 Aspects to be Considered
	3.1.5 General Documentation Guidelines
	3.1.6 Work Product Planning

	3.2 Natural-Language-Based Work Products
	3.3 Template-Based Work Products
	3.3.1 Phrase Templates
	3.3.1.1 Phrase Templates for Individual Requirements
	3.3.1.2 Phrase Templates for User Stories

	3.3.2 Form Templates
	3.3.3 Document Templates
	3.3.4 Advantages and Disadvantages

	3.4 Model-Based Work Products
	3.4.1 The Role of Models in Requirements Engineering
	3.4.1.1 Syntax and Semantics
	3.4.1.2 Properties of a Model
	3.4.1.3 Advantages and Disadvantages of Modeling Requirements
	3.4.1.4 Application of Requirements Models
	3.4.1.5 Quality Aspects of a Requirements Model
	3.4.1.6 Best of Both Worlds

	3.4.2 Modeling System Context
	3.4.2.1 Data Flow Diagram
	3.4.2.2 UML Use Case Diagram

	3.4.3 Modeling Structure and Data
	3.4.3.1 UML Class Diagrams

	3.4.4 Modeling Function and Flow
	3.4.4.1 UML Activity Diagram

	3.4.5 Modeling State and Behavior
	3.4.5.1 UML State diagram

	3.4.6 Supplementary models
	3.4.6.1 Modeling Goals
	3.4.6.2 SysML block definition diagrams
	3.4.6.3 Domain story models
	3.4.6.4 UML Sequence Diagram

	3.5 Glossaries
	3.6 Requirements Documents and Documentation Structures
	3.7 Prototypes in Requirements Engineering
	3.8 Quality Criteria for Work Products and Requirements
	3.9 Further Reading

	4 Practices for Requirements Elaboration
	4.1 Sources for Requirements
	4.1.1 Stakeholders
	4.1.1.1 A Special Stakeholder: The User
	4.1.1.2 Personas

	4.1.2 Documents
	4.1.3 Other Systems

	4.2 Elicitation of Requirements
	4.2.1 The Kano Model
	4.2.2 Gathering Techniques
	4.2.3 Design and Idea-Generating Techniques

	4.3 Resolving Conflicts regarding Requirements
	4.3.1 How Do You Resolve a Requirements Conflict?
	4.3.2 Conflict Types
	4.3.3 Conflict Resolution Techniques

	4.4 Validation of Requirements
	4.4.1 Important Aspects for Validation
	4.4.2 Validation Techniques

	4.5 Further Reading

	5 Process and Working Structure
	5.1 Influencing Factors
	5.2 Requirements Engineering Process Facets
	5.2.1 Time Facet: Linear versus Iterative
	5.2.2 Purpose Facet: Prescriptive versus Explorative
	5.2.3 Target Facet: Customer-Specific versus Market-Oriented
	5.2.4 Hints and Caveats
	5.2.5 Further Considerations

	5.3 Configuring a Requirements Engineering Process
	5.3.1 Typical Combinations of Facets
	5.3.2 Other RE Processes
	5.3.3 How to Configure RE Processes

	5.4 Further Reading

	6 Management Practices for Requirements
	6.1 What is Requirements Management?
	6.2 Life Cycle Management
	6.3 Version Control
	6.4 Configurations and Baselines
	6.5 Attributes and Views
	6.6 Traceability
	6.7 Handling Change
	6.8 Prioritization
	6.9 Further Reading

	7 Tool Support
	7.1 Tools in Requirements Engineering
	7.2 Introducing Tools
	7.2.1 Consider All Life Cycle Costs beyond License Costs
	7.2.2 Consider Necessary Resources
	7.2.3 Avoid Risks by Running Pilot Projects
	7.2.4 Evaluate the Tool according to Defined Criteria
	7.2.5 Instruct Employees on the Use of the Tool

	7.3 Further Reading

	8 References

